Upload fMRI-openneuro.py
Browse files- fMRI-openneuro.py +157 -0
fMRI-openneuro.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nibabel as nib
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
import boto3
|
8 |
+
|
9 |
+
|
10 |
+
_DESCRIPTION = """\
|
11 |
+
fMIR dataset from openneuro.org
|
12 |
+
"""
|
13 |
+
|
14 |
+
class fMRIConfig(datasets.BuilderConfig):
|
15 |
+
"""Builder Config for fMRI"""
|
16 |
+
|
17 |
+
def __init__(self, data_url, num_datasets=[10, 1, 1], num_frames=8, sampling_rate=1, **kwargs):
|
18 |
+
"""BuilderConfig for fMRI.
|
19 |
+
Args:
|
20 |
+
data_url: `string`, url to download the zip file from.
|
21 |
+
**kwargs: keyword arguments forwarded to super.
|
22 |
+
"""
|
23 |
+
super(fMRIConfig, self).__init__(**kwargs)
|
24 |
+
self.data_url = data_url
|
25 |
+
self.num_datasets = num_datasets
|
26 |
+
self.num_frames = num_frames
|
27 |
+
self.sampling_rate = sampling_rate
|
28 |
+
|
29 |
+
class fMRITest(datasets.GeneratorBasedBuilder):
|
30 |
+
"""TODO: Short description of my dataset."""
|
31 |
+
|
32 |
+
VERSION = datasets.Version("1.0.0")
|
33 |
+
|
34 |
+
# This is an example of a dataset with multiple configurations.
|
35 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
36 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
37 |
+
|
38 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
39 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
40 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
41 |
+
|
42 |
+
# You will be able to load one or the other configurations in the following list with
|
43 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
44 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
fMRIConfig(name="test1", data_url="openneuro.org", version=VERSION, description="fMRI test dataset 1", ),
|
47 |
+
]
|
48 |
+
|
49 |
+
DEFAULT_CONFIG_NAME = "test1" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
50 |
+
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
54 |
+
if self.config.name == "test1": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
55 |
+
# features = datasets.Features(
|
56 |
+
# {
|
57 |
+
# # "func": np.ndarray(shape=(65,77,65,self.config.duration)),
|
58 |
+
# "func": datasets.Array4D(shape=(None,None,None,self.config.duration), dtype='float32'),
|
59 |
+
# }
|
60 |
+
# )
|
61 |
+
features = None
|
62 |
+
return datasets.DatasetInfo(
|
63 |
+
# This is the description that will appear on the datasets page.
|
64 |
+
description=_DESCRIPTION,
|
65 |
+
# This defines the different columns of the dataset and their types
|
66 |
+
features=features, # Here we define them above because they are different between the two configurations
|
67 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
68 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
69 |
+
# supervised_keys=("sentence", "label"),
|
70 |
+
)
|
71 |
+
|
72 |
+
def _split_generators(self, dl_manager):
|
73 |
+
|
74 |
+
# Connect to S3
|
75 |
+
s3 = boto3.client('s3')
|
76 |
+
|
77 |
+
bucket_name = self.config.data_url
|
78 |
+
|
79 |
+
response = s3.list_objects_v2(Bucket=bucket_name, Prefix='', Delimiter='/')
|
80 |
+
|
81 |
+
folder_names = [x['Prefix'].split('/')[-2] for x in response.get('CommonPrefixes', [])]
|
82 |
+
print(len(folder_names))
|
83 |
+
|
84 |
+
ndatasets = self.config.num_datasets
|
85 |
+
if isinstance(ndatasets, int):
|
86 |
+
ndatasets = [ndatasets, 10, 10]
|
87 |
+
|
88 |
+
return [
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.TRAIN,
|
91 |
+
# These kwargs will be passed to _generate_examples
|
92 |
+
gen_kwargs={
|
93 |
+
"bucket_name": bucket_name,
|
94 |
+
"folder_names": folder_names[:ndatasets[0]],
|
95 |
+
},
|
96 |
+
),
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.VALIDATION,
|
99 |
+
# These kwargs will be passed to _generate_examples
|
100 |
+
gen_kwargs={
|
101 |
+
"bucket_name": bucket_name,
|
102 |
+
"folder_names": folder_names[ndatasets[0]:ndatasets[0] + ndatasets[1]],
|
103 |
+
},
|
104 |
+
),
|
105 |
+
datasets.SplitGenerator(
|
106 |
+
name=datasets.Split.TEST,
|
107 |
+
# These kwargs will be passed to _generate_examples
|
108 |
+
gen_kwargs={
|
109 |
+
"bucket_name": bucket_name,
|
110 |
+
"folder_names": folder_names[ndatasets[0] + ndatasets[1]:ndatasets[0] + ndatasets[1] + ndatasets[2]],
|
111 |
+
},
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
116 |
+
def _generate_examples(self, bucket_name, folder_names):
|
117 |
+
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
118 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
119 |
+
s3 = boto3.client('s3')
|
120 |
+
tmp_dir = os.path.join('tmp', folder_names[0]) if len(folder_names) > 0 else 'tmp'
|
121 |
+
if not os.path.exists(tmp_dir):
|
122 |
+
os.makedirs(tmp_dir)
|
123 |
+
anat_file = os.path.join(tmp_dir, 'T1w.nii.gz')
|
124 |
+
func_file = os.path.join(tmp_dir, 'bold.nii.gz')
|
125 |
+
|
126 |
+
duration = self.config.num_frames * self.config.sampling_rate
|
127 |
+
|
128 |
+
for folder_name in folder_names:
|
129 |
+
response = s3.list_objects_v2(Bucket=bucket_name, Prefix=folder_name)
|
130 |
+
for obj in response.get('Contents', []):
|
131 |
+
obj_key = obj['Key']
|
132 |
+
if '_T1w.nii.gz' in obj_key: # Anatomical
|
133 |
+
# Store subject number to verify anat/func match
|
134 |
+
anat_subj = obj_key.split('/')[1]
|
135 |
+
|
136 |
+
# Download the object to tmp location
|
137 |
+
s3.download_file(bucket_name, obj_key, anat_file)
|
138 |
+
|
139 |
+
# store the head of anat_subj
|
140 |
+
anat_header = nib.load(anat_file).header
|
141 |
+
elif '_bold.nii.gz' in obj_key: # Functional
|
142 |
+
func_subj = obj_key.split('/')[1]
|
143 |
+
if func_subj == anat_subj:
|
144 |
+
s3.download_file(bucket_name, obj_key, func_file)
|
145 |
+
func = nib.load(func_file).get_fdata().astype('float16')
|
146 |
+
func = np.transpose(func, (3, 0, 1, 2)) # T, X, Y, Z
|
147 |
+
shape = func.shape
|
148 |
+
# print(f"{obj_key}", shape)
|
149 |
+
for i in range(0, shape[0] - duration + self.config.sampling_rate, duration):
|
150 |
+
func_slice = func[i:i+duration:self.config.sampling_rate, :, :, :]
|
151 |
+
# print(f"{obj_key}-{i}", func_slice.shape)
|
152 |
+
yield f"{obj_key}-{i}", {
|
153 |
+
"func": func_slice,
|
154 |
+
}
|
155 |
+
|
156 |
+
|
157 |
+
|