File size: 25,544 Bytes
10bb986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import math
from typing import Dict, Optional
import torch
import torchvision.transforms.functional as FF
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionPipeline
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import USE_PEFT_BACKEND
try:
from compel import Compel
except ImportError:
Compel = None
KCOMM = "ADDCOMM"
KBRK = "BREAK"
class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
r"""
Args for Regional Prompting Pipeline:
rp_args:dict
Required
rp_args["mode"]: cols, rows, prompt, prompt-ex
for cols, rows mode
rp_args["div"]: ex) 1;1;1(Divide into 3 regions)
for prompt, prompt-ex mode
rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)
Optional
rp_args["save_mask"]: True/False (save masks in prompt mode)
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__(
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker,
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
@torch.no_grad()
def __call__(
self,
prompt: str,
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: str = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
rp_args: Dict[str, str] = None,
):
active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt
if negative_prompt is None:
negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt)
device = self._execution_device
regions = 0
self.power = int(rp_args["power"]) if "power" in rp_args else 1
prompts = prompt if isinstance(prompt, list) else [prompt]
n_prompts = negative_prompt if isinstance(prompt, str) else [negative_prompt]
self.batch = batch = num_images_per_prompt * len(prompts)
all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt)
all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt)
equal = len(all_prompts_cn) == len(all_n_prompts_cn)
if Compel:
compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)
def getcompelembs(prps):
embl = []
for prp in prps:
embl.append(compel.build_conditioning_tensor(prp))
return torch.cat(embl)
conds = getcompelembs(all_prompts_cn)
unconds = getcompelembs(all_n_prompts_cn)
embs = getcompelembs(prompts)
n_embs = getcompelembs(n_prompts)
prompt = negative_prompt = None
else:
conds = self.encode_prompt(prompts, device, 1, True)[0]
unconds = (
self.encode_prompt(n_prompts, device, 1, True)[0]
if equal
else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
)
embs = n_embs = None
if not active:
pcallback = None
mode = None
else:
if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]):
mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW"
ocells, icells, regions = make_cells(rp_args["div"])
elif "PRO" in rp_args["mode"].upper():
regions = len(all_prompts_p[0])
mode = "PROMPT"
reset_attnmaps(self)
self.ex = "EX" in rp_args["mode"].upper()
self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
thresholds = [float(x) for x in rp_args["th"].split(",")]
orig_hw = (height, width)
revers = True
def pcallback(s_self, step: int, timestep: int, latents: torch.FloatTensor, selfs=None):
if "PRO" in mode: # in Prompt mode, make masks from sum of attension maps
self.step = step
if len(self.attnmaps_sizes) > 3:
self.history[step] = self.attnmaps.copy()
for hw in self.attnmaps_sizes:
allmasks = []
basemasks = [None] * batch
for tt, th in zip(target_tokens, thresholds):
for b in range(batch):
key = f"{tt}-{b}"
_, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
mask = mask.unsqueeze(0).unsqueeze(-1)
if self.ex:
allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
allmasks.append(mask)
basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
basemasks = [1 - mask for mask in basemasks]
basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
allmasks = basemasks + allmasks
self.attnmasks[hw] = torch.cat(allmasks)
self.maskready = True
return latents
def hook_forward(module):
# diffusers==0.23.2
def forward(
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
attn = module
xshape = hidden_states.shape
self.hw = (h, w) = split_dims(xshape[1], *orig_hw)
if revers:
nx, px = hidden_states.chunk(2)
else:
px, nx = hidden_states.chunk(2)
if equal:
hidden_states = torch.cat(
[px for i in range(regions)] + [nx for i in range(regions)],
0,
)
encoder_hidden_states = torch.cat([conds] + [unconds])
else:
hidden_states = torch.cat([px for i in range(regions)] + [nx], 0)
encoder_hidden_states = torch.cat([conds] + [unconds])
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
args = () if USE_PEFT_BACKEND else (scale,)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
getattn="PRO" in mode,
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
#### Regional Prompting Col/Row mode
if any(x in mode for x in ["COL", "ROW"]):
reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
center = reshaped.shape[0] // 2
px = reshaped[0:center] if equal else reshaped[0:-batch]
nx = reshaped[center:] if equal else reshaped[-batch:]
outs = [px, nx] if equal else [px]
for out in outs:
c = 0
for i, ocell in enumerate(ocells):
for icell in icells[i]:
if "ROW" in mode:
out[
0:batch,
int(h * ocell[0]) : int(h * ocell[1]),
int(w * icell[0]) : int(w * icell[1]),
:,
] = out[
c * batch : (c + 1) * batch,
int(h * ocell[0]) : int(h * ocell[1]),
int(w * icell[0]) : int(w * icell[1]),
:,
]
else:
out[
0:batch,
int(h * icell[0]) : int(h * icell[1]),
int(w * ocell[0]) : int(w * ocell[1]),
:,
] = out[
c * batch : (c + 1) * batch,
int(h * icell[0]) : int(h * icell[1]),
int(w * ocell[0]) : int(w * ocell[1]),
:,
]
c += 1
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
hidden_states = hidden_states.reshape(xshape)
#### Regional Prompting Prompt mode
elif "PRO" in mode:
px, nx = (
torch.chunk(hidden_states) if equal else hidden_states[0:-batch],
hidden_states[-batch:],
)
if (h, w) in self.attnmasks and self.maskready:
def mask(input):
out = torch.multiply(input, self.attnmasks[(h, w)])
for b in range(batch):
for r in range(1, regions):
out[b] = out[b] + out[r * batch + b]
return out
px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx)
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
return hidden_states
return forward
def hook_forwards(root_module: torch.nn.Module):
for name, module in root_module.named_modules():
if "attn2" in name and module.__class__.__name__ == "Attention":
module.forward = hook_forward(module)
hook_forwards(self.unet)
output = StableDiffusionPipeline(**self.components)(
prompt=prompt,
prompt_embeds=embs,
negative_prompt=negative_prompt,
negative_prompt_embeds=n_embs,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback_on_step_end=pcallback,
)
if "save_mask" in rp_args:
save_mask = rp_args["save_mask"]
else:
save_mask = False
if mode == "PROMPT" and save_mask:
saveattnmaps(
self,
output,
height,
width,
thresholds,
num_inference_steps // 2,
regions,
)
return output
### Make prompt list for each regions
def promptsmaker(prompts, batch):
out_p = []
plen = len(prompts)
for prompt in prompts:
add = ""
if KCOMM in prompt:
add, prompt = prompt.split(KCOMM)
add = add + " "
prompts = prompt.split(KBRK)
out_p.append([add + p for p in prompts])
out = [None] * batch * len(out_p[0]) * len(out_p)
for p, prs in enumerate(out_p): # inputs prompts
for r, pr in enumerate(prs): # prompts for regions
start = (p + r * plen) * batch
out[start : start + batch] = [pr] * batch # P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1...
return out, out_p
### make regions from ratios
### ";" makes outercells, "," makes inner cells
def make_cells(ratios):
if ";" not in ratios and "," in ratios:
ratios = ratios.replace(",", ";")
ratios = ratios.split(";")
ratios = [inratios.split(",") for inratios in ratios]
icells = []
ocells = []
def startend(cells, array):
current_start = 0
array = [float(x) for x in array]
for value in array:
end = current_start + (value / sum(array))
cells.append([current_start, end])
current_start = end
startend(ocells, [r[0] for r in ratios])
for inratios in ratios:
if 2 > len(inratios):
icells.append([[0, 1]])
else:
add = []
startend(add, inratios[1:])
icells.append(add)
return ocells, icells, sum(len(cell) for cell in icells)
def make_emblist(self, prompts):
with torch.no_grad():
tokens = self.tokenizer(
prompts,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids.to(self.device)
embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype)
return embs
def split_dims(xs, height, width):
xs = xs
def repeat_div(x, y):
while y > 0:
x = math.ceil(x / 2)
y = y - 1
return x
scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
dsh = repeat_div(height, scale)
dsw = repeat_div(width, scale)
return dsh, dsw
##### for prompt mode
def get_attn_maps(self, attn):
height, width = self.hw
target_tokens = self.target_tokens
if (height, width) not in self.attnmaps_sizes:
self.attnmaps_sizes.append((height, width))
for b in range(self.batch):
for t in target_tokens:
power = self.power
add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1)
add = torch.sum(add, dim=2)
key = f"{t}-{b}"
if key not in self.attnmaps:
self.attnmaps[key] = add
else:
if self.attnmaps[key].shape[1] != add.shape[1]:
add = add.view(8, height, width)
add = FF.resize(add, self.attnmaps_sizes[0], antialias=None)
add = add.reshape_as(self.attnmaps[key])
self.attnmaps[key] = self.attnmaps[key] + add
def reset_attnmaps(self): # init parameters in every batch
self.step = 0
self.attnmaps = {} # maked from attention maps
self.attnmaps_sizes = [] # height,width set of u-net blocks
self.attnmasks = {} # maked from attnmaps for regions
self.maskready = False
self.history = {}
def saveattnmaps(self, output, h, w, th, step, regions):
masks = []
for i, mask in enumerate(self.history[step].values()):
img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step)
if self.ex:
masks = [x - mask for x in masks]
masks.append(mask)
if len(masks) == regions - 1:
output.images.extend([FF.to_pil_image(mask) for mask in masks])
masks = []
else:
output.images.append(img)
def makepmask(
self, mask, h, w, th, step
): # make masks from attention cache return [for preview, for attention, for Latent]
th = th - step * 0.005
if 0.05 >= th:
th = 0.05
mask = torch.mean(mask, dim=0)
mask = mask / mask.max().item()
mask = torch.where(mask > th, 1, 0)
mask = mask.float()
mask = mask.view(1, *self.attnmaps_sizes[0])
img = FF.to_pil_image(mask)
img = img.resize((w, h))
mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None)
lmask = mask
mask = mask.reshape(h * w)
mask = torch.where(mask > 0.1, 1, 0)
return img, mask, lmask
def tokendealer(self, all_prompts):
for prompts in all_prompts:
targets = [p.split(",")[-1] for p in prompts[1:]]
tt = []
for target in targets:
ptokens = (
self.tokenizer(
prompts,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids
)[0]
ttokens = (
self.tokenizer(
target,
max_length=self.tokenizer.model_max_length,
padding=True,
truncation=True,
return_tensors="pt",
).input_ids
)[0]
tlist = []
for t in range(ttokens.shape[0] - 2):
for p in range(ptokens.shape[0]):
if ttokens[t + 1] == ptokens[p]:
tlist.append(p)
if tlist != []:
tt.append(tlist)
return tt
def scaled_dot_product_attention(
self,
query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
scale=None,
getattn=False,
) -> torch.Tensor:
# Efficient implementation equivalent to the following:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
if getattn:
get_attn_maps(self, attn_weight)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
|