File size: 11,488 Bytes
b87fc0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import glob
import os
from typing import Dict, List, Union
import torch
from diffusers import DiffusionPipeline, __version__
from diffusers.pipeline_utils import (
CONFIG_NAME,
DIFFUSERS_CACHE,
ONNX_WEIGHTS_NAME,
SCHEDULER_CONFIG_NAME,
WEIGHTS_NAME,
)
from huggingface_hub import snapshot_download
class CheckpointMergerPipeline(DiffusionPipeline):
"""
A class that that supports merging diffusion models based on the discussion here:
https://github.com/huggingface/diffusers/issues/877
Example usage:-
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
merged_pipe.to('cuda')
prompt = "An astronaut riding a unicycle on Mars"
results = merged_pipe(prompt)
## For more details, see the docstring for the merge method.
"""
def __init__(self):
super().__init__()
def _compare_model_configs(self, dict0, dict1):
if dict0 == dict1:
return True
else:
config0, meta_keys0 = self._remove_meta_keys(dict0)
config1, meta_keys1 = self._remove_meta_keys(dict1)
if config0 == config1:
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
return True
return False
def _remove_meta_keys(self, config_dict: Dict):
meta_keys = []
temp_dict = config_dict.copy()
for key in config_dict.keys():
if key.startswith("_"):
temp_dict.pop(key)
meta_keys.append(key)
return (temp_dict, meta_keys)
@torch.no_grad()
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
"""
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
in the argument 'pretrained_model_name_or_path_list' as a list.
Parameters:
-----------
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
**kwargs:
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
"""
# Default kwargs from DiffusionPipeline
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
device_map = kwargs.pop("device_map", None)
alpha = kwargs.pop("alpha", 0.5)
interp = kwargs.pop("interp", None)
print("Recieved list", pretrained_model_name_or_path_list)
checkpoint_count = len(pretrained_model_name_or_path_list)
# Ignore result from model_index_json comparision of the two checkpoints
force = kwargs.pop("force", False)
# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
if checkpoint_count > 3 or checkpoint_count < 2:
raise ValueError(
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
" passed."
)
print("Received the right number of checkpoints")
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None
# Validate that the checkpoints can be merged
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
config_dicts = []
for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
if not os.path.isdir(pretrained_model_name_or_path):
config_dict = DiffusionPipeline.get_config_dict(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
)
config_dicts.append(config_dict)
comparison_result = True
for idx in range(1, len(config_dicts)):
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
if not force and comparison_result is False:
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
print(config_dicts[0], config_dicts[1])
print("Compatible model_index.json files found")
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
cached_folders = []
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
allow_patterns = [os.path.join(k, "*") for k in folder_names]
allow_patterns += [
WEIGHTS_NAME,
SCHEDULER_CONFIG_NAME,
CONFIG_NAME,
ONNX_WEIGHTS_NAME,
DiffusionPipeline.config_name,
]
requested_pipeline_class = config_dict.get("_class_name")
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
cached_folder = snapshot_download(
pretrained_model_name_or_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
allow_patterns=allow_patterns,
user_agent=user_agent,
)
print("Cached Folder", cached_folder)
cached_folders.append(cached_folder)
# Step 3:-
# Load the first checkpoint as a diffusion pipeline and modify it's module state_dict in place
final_pipe = DiffusionPipeline.from_pretrained(
cached_folders[0], torch_dtype=torch_dtype, device_map=device_map
)
checkpoint_path_2 = None
if len(cached_folders) > 2:
checkpoint_path_2 = os.path.join(cached_folders[2])
if interp == "sigmoid":
theta_func = CheckpointMergerPipeline.sigmoid
elif interp == "inv_sigmoid":
theta_func = CheckpointMergerPipeline.inv_sigmoid
elif interp == "add_diff":
theta_func = CheckpointMergerPipeline.add_difference
else:
theta_func = CheckpointMergerPipeline.weighted_sum
# Find each module's state dict.
for attr in final_pipe.config.keys():
if not attr.startswith("_"):
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
if os.path.exists(checkpoint_path_1):
files = glob.glob(os.path.join(checkpoint_path_1, "*.bin"))
checkpoint_path_1 = files[0] if len(files) > 0 else None
if checkpoint_path_2 is not None and os.path.exists(checkpoint_path_2):
files = glob.glob(os.path.join(checkpoint_path_2, "*.bin"))
checkpoint_path_2 = files[0] if len(files) > 0 else None
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
if checkpoint_path_1 is None and checkpoint_path_2 is None:
print("SKIPPING ATTR ", attr)
continue
try:
module = getattr(final_pipe, attr)
theta_0 = getattr(module, "state_dict")
theta_0 = theta_0()
update_theta_0 = getattr(module, "load_state_dict")
theta_1 = torch.load(checkpoint_path_1)
theta_2 = torch.load(checkpoint_path_2) if checkpoint_path_2 else None
if not theta_0.keys() == theta_1.keys():
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
continue
if theta_2 and not theta_1.keys() == theta_2.keys():
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
except:
print("SKIPPING ATTR ", attr)
continue
print("Found dicts for")
print(attr)
print(checkpoint_path_1)
print(checkpoint_path_2)
for key in theta_0.keys():
if theta_2:
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
else:
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)
del theta_1
del theta_2
update_theta_0(theta_0)
del theta_0
print("Diffusion pipeline successfully updated with merged weights")
return final_pipe
@staticmethod
def weighted_sum(theta0, theta1, theta2, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def sigmoid(theta0, theta1, theta2, alpha):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
@staticmethod
def inv_sigmoid(theta0, theta1, theta2, alpha):
import math
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
return theta0 + ((theta1 - theta0) * alpha)
@staticmethod
def add_difference(theta0, theta1, theta2, alpha):
return theta0 + (theta1 - theta2) * (1.0 - alpha)
|