Datasets:

ArXiv:
File size: 4,863 Bytes
0b1273f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import Union

import torch
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DiffusionPipeline,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UNet2DConditionModel,
)


class MagicMixPipeline(DiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
    ):
        super().__init__()

        self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)

    # convert PIL image to latents
    def encode(self, img):
        with torch.no_grad():
            latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1)
            latent = 0.18215 * latent.latent_dist.sample()
        return latent

    # convert latents to PIL image
    def decode(self, latent):
        latent = (1 / 0.18215) * latent
        with torch.no_grad():
            img = self.vae.decode(latent).sample
        img = (img / 2 + 0.5).clamp(0, 1)
        img = img.detach().cpu().permute(0, 2, 3, 1).numpy()
        img = (img * 255).round().astype("uint8")
        return Image.fromarray(img[0])

    # convert prompt into text embeddings, also unconditional embeddings
    def prep_text(self, prompt):
        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )

        text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0]

        uncond_input = self.tokenizer(
            "",
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )

        uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0]

        return torch.cat([uncond_embedding, text_embedding])

    def __call__(
        self,
        img: Image.Image,
        prompt: str,
        kmin: float = 0.3,
        kmax: float = 0.6,
        mix_factor: float = 0.5,
        seed: int = 42,
        steps: int = 50,
        guidance_scale: float = 7.5,
    ) -> Image.Image:
        tmin = steps - int(kmin * steps)
        tmax = steps - int(kmax * steps)

        text_embeddings = self.prep_text(prompt)

        self.scheduler.set_timesteps(steps)

        width, height = img.size
        encoded = self.encode(img)

        torch.manual_seed(seed)
        noise = torch.randn(
            (1, self.unet.config.in_channels, height // 8, width // 8),
        ).to(self.device)

        latents = self.scheduler.add_noise(
            encoded,
            noise,
            timesteps=self.scheduler.timesteps[tmax],
        )

        input = torch.cat([latents] * 2)

        input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax])

        with torch.no_grad():
            pred = self.unet(
                input,
                self.scheduler.timesteps[tmax],
                encoder_hidden_states=text_embeddings,
            ).sample

        pred_uncond, pred_text = pred.chunk(2)
        pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)

        latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample

        for i, t in enumerate(tqdm(self.scheduler.timesteps)):
            if i > tmax:
                if i < tmin:  # layout generation phase
                    orig_latents = self.scheduler.add_noise(
                        encoded,
                        noise,
                        timesteps=t,
                    )

                    input = (mix_factor * latents) + (
                        1 - mix_factor
                    ) * orig_latents  # interpolating between layout noise and conditionally generated noise to preserve layout sematics
                    input = torch.cat([input] * 2)

                else:  # content generation phase
                    input = torch.cat([latents] * 2)

                input = self.scheduler.scale_model_input(input, t)

                with torch.no_grad():
                    pred = self.unet(
                        input,
                        t,
                        encoder_hidden_states=text_embeddings,
                    ).sample

                pred_uncond, pred_text = pred.chunk(2)
                pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)

                latents = self.scheduler.step(pred, t, latents).prev_sample

        return self.decode(latents)