File size: 5,907 Bytes
3d01aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from typing import List, Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput
from diffusers.schedulers.scheduling_utils import SchedulerMixin
class IADBScheduler(SchedulerMixin, ConfigMixin):
"""
IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist.
For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
"""
def step(
self,
model_output: torch.Tensor,
timestep: int,
x_alpha: torch.Tensor,
) -> torch.Tensor:
"""
Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
timestep (`float`): current timestep in the diffusion chain.
x_alpha (`torch.Tensor`): x_alpha sample for the current timestep
Returns:
`torch.Tensor`: the sample at the previous timestep
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
alpha = timestep / self.num_inference_steps
alpha_next = (timestep + 1) / self.num_inference_steps
d = model_output
x_alpha = x_alpha + (alpha_next - alpha) * d
return x_alpha
def set_timesteps(self, num_inference_steps: int):
self.num_inference_steps = num_inference_steps
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
alpha: torch.Tensor,
) -> torch.Tensor:
return original_samples * alpha + noise * (1 - alpha)
def __len__(self):
return self.config.num_train_timesteps
class IADBPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
[`DDPMScheduler`], or [`DDIMScheduler`].
"""
def __init__(self, unet, scheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
# Sample gaussian noise to begin loop
if isinstance(self.unet.config.sample_size, int):
image_shape = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
# set step values
self.scheduler.set_timesteps(num_inference_steps)
x_alpha = image.clone()
for t in self.progress_bar(range(num_inference_steps)):
alpha = t / num_inference_steps
# 1. predict noise model_output
model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample
# 2. step
x_alpha = self.scheduler.step(model_output, t, x_alpha)
image = (x_alpha * 0.5 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|