File size: 13,549 Bytes
63faf7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# Copyright 2023 Peter Willemsen <peter@codebuffet.co>. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def make_transparency_mask(size, overlap_pixels, remove_borders=[]):
size_x = size[0] - overlap_pixels * 2
size_y = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
mask = np.ones((size_y, size_x), dtype=np.uint8) * 255
mask = np.pad(mask, mode="linear_ramp", pad_width=overlap_pixels, end_values=0)
if "l" in remove_borders:
mask = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
mask = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
mask = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
mask = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def clamp(n, smallest, largest):
return max(smallest, min(n, largest))
def clamp_rect(rect: [int], min: [int], max: [int]):
return (
clamp(rect[0], min[0], max[0]),
clamp(rect[1], min[1], max[1]),
clamp(rect[2], min[0], max[0]),
clamp(rect[3], min[1], max[1]),
)
def add_overlap_rect(rect: [int], overlap: int, image_size: [int]):
rect = list(rect)
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
rect = clamp_rect(rect, [0, 0], [image_size[0], image_size[1]])
return rect
def squeeze_tile(tile, original_image, original_slice, slice_x):
result = Image.new("RGB", (tile.size[0] + original_slice, tile.size[1]))
result.paste(
original_image.resize((tile.size[0], tile.size[1]), Image.BICUBIC).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1])
),
(0, 0),
)
result.paste(tile, (original_slice, 0))
return result
def unsqueeze_tile(tile, original_image_slice):
crop_rect = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
tile = tile.crop(crop_rect)
return tile
def next_divisible(n, d):
divisor = n % d
return n - divisor
class StableDiffusionTiledUpscalePipeline(StableDiffusionUpscalePipeline):
r"""
Pipeline for tile-based text-guided image super-resolution using Stable Diffusion 2, trading memory for compute
to create gigantic images.
This model inherits from [`StableDiffusionUpscalePipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
low_res_scheduler ([`SchedulerMixin`]):
A scheduler used to add initial noise to the low res conditioning image. It must be an instance of
[`DDPMScheduler`].
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
low_res_scheduler: DDPMScheduler,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
max_noise_level: int = 350,
):
super().__init__(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
low_res_scheduler=low_res_scheduler,
scheduler=scheduler,
max_noise_level=max_noise_level,
)
def _process_tile(self, original_image_slice, x, y, tile_size, tile_border, image, final_image, **kwargs):
torch.manual_seed(0)
crop_rect = (
min(image.size[0] - (tile_size + original_image_slice), x * tile_size),
min(image.size[1] - (tile_size + original_image_slice), y * tile_size),
min(image.size[0], (x + 1) * tile_size),
min(image.size[1], (y + 1) * tile_size),
)
crop_rect_with_overlap = add_overlap_rect(crop_rect, tile_border, image.size)
tile = image.crop(crop_rect_with_overlap)
translated_slice_x = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
translated_slice_x = translated_slice_x - (original_image_slice / 2)
translated_slice_x = max(0, translated_slice_x)
to_input = squeeze_tile(tile, image, original_image_slice, translated_slice_x)
orig_input_size = to_input.size
to_input = to_input.resize((tile_size, tile_size), Image.BICUBIC)
upscaled_tile = super(StableDiffusionTiledUpscalePipeline, self).__call__(image=to_input, **kwargs).images[0]
upscaled_tile = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4), Image.BICUBIC)
upscaled_tile = unsqueeze_tile(upscaled_tile, original_image_slice)
upscaled_tile = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4), Image.BICUBIC)
remove_borders = []
if x == 0:
remove_borders.append("l")
elif crop_rect[2] == image.size[0]:
remove_borders.append("r")
if y == 0:
remove_borders.append("t")
elif crop_rect[3] == image.size[1]:
remove_borders.append("b")
transparency_mask = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]), tile_border * 4, remove_borders=remove_borders
),
mode="L",
)
final_image.paste(
upscaled_tile, (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4), transparency_mask
)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
image: Union[PIL.Image.Image, List[PIL.Image.Image]],
num_inference_steps: int = 75,
guidance_scale: float = 9.0,
noise_level: int = 50,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
tile_size: int = 128,
tile_border: int = 32,
original_image_slice: int = 32,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.FloatTensor`):
`Image`, or tensor representing an image batch which will be upscaled. *
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
tile_size (`int`, *optional*):
The size of the tiles. Too big can result in an OOM-error.
tile_border (`int`, *optional*):
The number of pixels around a tile to consider (bigger means less seams, too big can lead to an OOM-error).
original_image_slice (`int`, *optional*):
The amount of pixels of the original image to calculate with the current tile (bigger means more depth
is preserved, less blur occurs in the final image, too big can lead to an OOM-error or loss in detail).
callback (`Callable`, *optional*):
A function that take a callback function with a single argument, a dict,
that contains the (partially) processed image under "image",
as well as the progress (0 to 1, where 1 is completed) under "progress".
Returns: A PIL.Image that is 4 times larger than the original input image.
"""
final_image = Image.new("RGB", (image.size[0] * 4, image.size[1] * 4))
tcx = math.ceil(image.size[0] / tile_size)
tcy = math.ceil(image.size[1] / tile_size)
total_tile_count = tcx * tcy
current_count = 0
for y in range(tcy):
for x in range(tcx):
self._process_tile(
original_image_slice,
x,
y,
tile_size,
tile_border,
image,
final_image,
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
noise_level=noise_level,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
)
current_count += 1
if callback is not None:
callback({"progress": current_count / total_tile_count, "image": final_image})
return final_image
def main():
# Run a demo
model_id = "stabilityai/stable-diffusion-x4-upscaler"
pipe = StableDiffusionTiledUpscalePipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = Image.open("../../docs/source/imgs/diffusers_library.jpg")
def callback(obj):
print(f"progress: {obj['progress']:.4f}")
obj["image"].save("diffusers_library_progress.jpg")
final_image = pipe(image=image, prompt="Black font, white background, vector", noise_level=40, callback=callback)
final_image.save("diffusers_library.jpg")
if __name__ == "__main__":
main()
|