Datasets:

ArXiv:
File size: 10,849 Bytes
81b7c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from typing import Optional, Tuple, Union

import torch
from einops import rearrange, reduce

from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput


BITS = 8


# convert to bit representations and back taken from https://github.com/lucidrains/bit-diffusion/blob/main/bit_diffusion/bit_diffusion.py
def decimal_to_bits(x, bits=BITS):
    """expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1"""
    device = x.device

    x = (x * 255).int().clamp(0, 255)

    mask = 2 ** torch.arange(bits - 1, -1, -1, device=device)
    mask = rearrange(mask, "d -> d 1 1")
    x = rearrange(x, "b c h w -> b c 1 h w")

    bits = ((x & mask) != 0).float()
    bits = rearrange(bits, "b c d h w -> b (c d) h w")
    bits = bits * 2 - 1
    return bits


def bits_to_decimal(x, bits=BITS):
    """expects bits from -1 to 1, outputs image tensor from 0 to 1"""
    device = x.device

    x = (x > 0).int()
    mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32)

    mask = rearrange(mask, "d -> d 1 1")
    x = rearrange(x, "b (c d) h w -> b c d h w", d=8)
    dec = reduce(x * mask, "b c d h w -> b c h w", "sum")
    return (dec / 255).clamp(0.0, 1.0)


# modified scheduler step functions for clamping the predicted x_0 between -bit_scale and +bit_scale
def ddim_bit_scheduler_step(
    self,
    model_output: torch.FloatTensor,
    timestep: int,
    sample: torch.FloatTensor,
    eta: float = 0.0,
    use_clipped_model_output: bool = True,
    generator=None,
    return_dict: bool = True,
) -> Union[DDIMSchedulerOutput, Tuple]:
    """
    Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
    process from the learned model outputs (most often the predicted noise).
    Args:
        model_output (`torch.FloatTensor`): direct output from learned diffusion model.
        timestep (`int`): current discrete timestep in the diffusion chain.
        sample (`torch.FloatTensor`):
            current instance of sample being created by diffusion process.
        eta (`float`): weight of noise for added noise in diffusion step.
        use_clipped_model_output (`bool`): TODO
        generator: random number generator.
        return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
    Returns:
        [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
        [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
        returning a tuple, the first element is the sample tensor.
    """
    if self.num_inference_steps is None:
        raise ValueError(
            "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
        )

    # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
    # Ideally, read DDIM paper in-detail understanding

    # Notation (<variable name> -> <name in paper>
    # - pred_noise_t -> e_theta(x_t, t)
    # - pred_original_sample -> f_theta(x_t, t) or x_0
    # - std_dev_t -> sigma_t
    # - eta -> η
    # - pred_sample_direction -> "direction pointing to x_t"
    # - pred_prev_sample -> "x_t-1"

    # 1. get previous step value (=t-1)
    prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = self.alphas_cumprod[timestep]
    alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    scale = self.bit_scale
    if self.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    variance = self._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    if use_clipped_model_output:
        # the model_output is always re-derived from the clipped x_0 in Glide
        model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output

    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

    if eta > 0:
        # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
        device = model_output.device if torch.is_tensor(model_output) else "cpu"
        noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device)
        variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

        prev_sample = prev_sample + variance

    if not return_dict:
        return (prev_sample,)

    return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)


def ddpm_bit_scheduler_step(
    self,
    model_output: torch.FloatTensor,
    timestep: int,
    sample: torch.FloatTensor,
    prediction_type="epsilon",
    generator=None,
    return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
    """
    Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
    process from the learned model outputs (most often the predicted noise).
    Args:
        model_output (`torch.FloatTensor`): direct output from learned diffusion model.
        timestep (`int`): current discrete timestep in the diffusion chain.
        sample (`torch.FloatTensor`):
            current instance of sample being created by diffusion process.
        prediction_type (`str`, default `epsilon`):
            indicates whether the model predicts the noise (epsilon), or the samples (`sample`).
        generator: random number generator.
        return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
    Returns:
        [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
        [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
        returning a tuple, the first element is the sample tensor.
    """
    t = timestep

    if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
        model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
    else:
        predicted_variance = None

    # 1. compute alphas, betas
    alpha_prod_t = self.alphas_cumprod[t]
    alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev

    # 2. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
    if prediction_type == "epsilon":
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    elif prediction_type == "sample":
        pred_original_sample = model_output
    else:
        raise ValueError(f"Unsupported prediction_type {prediction_type}.")

    # 3. Clip "predicted x_0"
    scale = self.bit_scale
    if self.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)

    # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
    current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t

    # 5. Compute predicted previous sample µ_t
    # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
    pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

    # 6. Add noise
    variance = 0
    if t > 0:
        noise = torch.randn(
            model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
        ).to(model_output.device)
        variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise

    pred_prev_sample = pred_prev_sample + variance

    if not return_dict:
        return (pred_prev_sample,)

    return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)


class BitDiffusion(DiffusionPipeline):
    def __init__(
        self,
        unet: UNet2DConditionModel,
        scheduler: Union[DDIMScheduler, DDPMScheduler],
        bit_scale: Optional[float] = 1.0,
    ):
        super().__init__()
        self.bit_scale = bit_scale
        self.scheduler.step = (
            ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step
        )

        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        height: Optional[int] = 256,
        width: Optional[int] = 256,
        num_inference_steps: Optional[int] = 50,
        generator: Optional[torch.Generator] = None,
        batch_size: Optional[int] = 1,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        latents = torch.randn(
            (batch_size, self.unet.config.in_channels, height, width),
            generator=generator,
        )
        latents = decimal_to_bits(latents) * self.bit_scale
        latents = latents.to(self.device)

        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # predict the noise residual
            noise_pred = self.unet(latents, t).sample

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        image = bits_to_decimal(latents)

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)