Datasets:

ArXiv:
File size: 56,861 Bytes
6132a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import BaseOutput, deprecate, logging
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor


gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)
from gmflow.gmflow import GMFlow  # noqa: E402

from utils.utils import InputPadder  # noqa: E402


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def coords_grid(b, h, w, homogeneous=False, device=None):
    y, x = torch.meshgrid(torch.arange(h), torch.arange(w))  # [H, W]

    stacks = [x, y]

    if homogeneous:
        ones = torch.ones_like(x)  # [H, W]
        stacks.append(ones)

    grid = torch.stack(stacks, dim=0).float()  # [2, H, W] or [3, H, W]

    grid = grid[None].repeat(b, 1, 1, 1)  # [B, 2, H, W] or [B, 3, H, W]

    if device is not None:
        grid = grid.to(device)

    return grid


def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False):
    # img: [B, C, H, W]
    # sample_coords: [B, 2, H, W] in image scale
    if sample_coords.size(1) != 2:  # [B, H, W, 2]
        sample_coords = sample_coords.permute(0, 3, 1, 2)

    b, _, h, w = sample_coords.shape

    # Normalize to [-1, 1]
    x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
    y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1

    grid = torch.stack([x_grid, y_grid], dim=-1)  # [B, H, W, 2]

    img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True)

    if return_mask:
        mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1)  # [B, H, W]

        return img, mask

    return img


def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"):
    b, c, h, w = feature.size()
    assert flow.size(1) == 2

    grid = coords_grid(b, h, w).to(flow.device) + flow  # [B, 2, H, W]
    grid = grid.to(feature.dtype)
    return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask)


def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5):
    # fwd_flow, bwd_flow: [B, 2, H, W]
    # alpha and beta values are following UnFlow
    # (https://arxiv.org/abs/1711.07837)
    assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
    assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
    flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1)  # [B, H, W]

    warped_bwd_flow = flow_warp(bwd_flow, fwd_flow)  # [B, 2, H, W]
    warped_fwd_flow = flow_warp(fwd_flow, bwd_flow)  # [B, 2, H, W]

    diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1)  # [B, H, W]
    diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)

    threshold = alpha * flow_mag + beta

    fwd_occ = (diff_fwd > threshold).float()  # [B, H, W]
    bwd_occ = (diff_bwd > threshold).float()

    return fwd_occ, bwd_occ


@torch.no_grad()
def get_warped_and_mask(flow_model, image1, image2, image3=None, pixel_consistency=False):
    if image3 is None:
        image3 = image1
    padder = InputPadder(image1.shape, padding_factor=8)
    image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
    results_dict = flow_model(
        image1, image2, attn_splits_list=[2], corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True
    )
    flow_pr = results_dict["flow_preds"][-1]  # [B, 2, H, W]
    fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0)  # [1, 2, H, W]
    bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0)  # [1, 2, H, W]
    fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow)  # [1, H, W] float
    if pixel_consistency:
        warped_image1 = flow_warp(image1, bwd_flow)
        bwd_occ = torch.clamp(
            bwd_occ + (abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1
        ).unsqueeze(0)
    warped_results = flow_warp(image3, bwd_flow)
    return warped_results, bwd_occ, bwd_flow


blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18))


@dataclass
class TextToVideoSDPipelineOutput(BaseOutput):
    """
    Output class for text-to-video pipelines.

    Args:
        frames (`List[np.ndarray]` or `torch.FloatTensor`)
            List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
            a `torch` tensor. The length of the list denotes the video length (the number of frames).
    """

    frames: Union[List[np.ndarray], torch.FloatTensor]


@torch.no_grad()
def find_flat_region(mask):
    device = mask.device
    kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device)
    kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device)
    mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode="replicate")

    grad_x = torch.nn.functional.conv2d(mask_, kernel_x)
    grad_y = torch.nn.functional.conv2d(mask_, kernel_y)
    return ((abs(grad_x) + abs(grad_y)) == 0).float()[0]


class AttnState:
    STORE = 0
    LOAD = 1
    LOAD_AND_STORE_PREV = 2

    def __init__(self):
        self.reset()

    @property
    def state(self):
        return self.__state

    @property
    def timestep(self):
        return self.__timestep

    def set_timestep(self, t):
        self.__timestep = t

    def reset(self):
        self.__state = AttnState.STORE
        self.__timestep = 0

    def to_load(self):
        self.__state = AttnState.LOAD

    def to_load_and_store_prev(self):
        self.__state = AttnState.LOAD_AND_STORE_PREV


class CrossFrameAttnProcessor(AttnProcessor):
    """
    Cross frame attention processor. Each frame attends the first frame and previous frame.

    Args:
        attn_state: Whether the model is processing the first frame or an intermediate frame
    """

    def __init__(self, attn_state: AttnState):
        super().__init__()
        self.attn_state = attn_state
        self.first_maps = {}
        self.prev_maps = {}

    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
        # Is self attention
        if encoder_hidden_states is None:
            t = self.attn_state.timestep
            if self.attn_state.state == AttnState.STORE:
                self.first_maps[t] = hidden_states.detach()
                self.prev_maps[t] = hidden_states.detach()
                res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)
            else:
                if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV:
                    tmp = hidden_states.detach()
                cross_map = torch.cat((self.first_maps[t], self.prev_maps[t]), dim=1)
                res = super().__call__(attn, hidden_states, cross_map, attention_mask, temb)
                if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV:
                    self.prev_maps[t] = tmp
        else:
            res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb)

        return res


def prepare_image(image):
    if isinstance(image, torch.Tensor):
        # Batch single image
        if image.ndim == 3:
            image = image.unsqueeze(0)

        image = image.to(dtype=torch.float32)
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]

        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

    return image


class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline):
    r"""
    Pipeline for video-to-video translation using Stable Diffusion with Rerender Algorithm.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    In addition the pipeline inherits the following loading methods:
        - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
            Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
            as a list, the outputs from each ControlNet are added together to create one combined additional
            conditioning.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder=None,
        requires_safety_checker: bool = True,
    ):
        super().__init__(
            vae,
            text_encoder,
            tokenizer,
            unet,
            controlnet,
            scheduler,
            safety_checker,
            feature_extractor,
            image_encoder,
            requires_safety_checker,
        )

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        self.register_to_config(requires_safety_checker=requires_safety_checker)
        self.attn_state = AttnState()
        attn_processor_dict = {}
        for k in unet.attn_processors.keys():
            if k.startswith("up"):
                attn_processor_dict[k] = CrossFrameAttnProcessor(self.attn_state)
            else:
                attn_processor_dict[k] = AttnProcessor()

        self.unet.set_attn_processor(attn_processor_dict)

        flow_model = GMFlow(
            feature_channels=128,
            num_scales=1,
            upsample_factor=8,
            num_head=1,
            attention_type="swin",
            ffn_dim_expansion=4,
            num_transformer_layers=6,
        ).to("cuda")

        checkpoint = torch.utils.model_zoo.load_url(
            "https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth",
            map_location=lambda storage, loc: storage,
        )
        weights = checkpoint["model"] if "model" in checkpoint else checkpoint
        flow_model.load_state_dict(weights, strict=False)
        flow_model.eval()
        self.flow_model = flow_model

    # Modified from src/diffusers/pipelines/controlnet/pipeline_controlnet.StableDiffusionControlNetImg2ImgPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        controlnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
    ):
        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
    def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                init_latents = [
                    self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = self.vae.encode(image).latent_dist.sample(generator)

            init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            deprecation_message = (
                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
                " your script to pass as many initial images as text prompts to suppress this warning."
            )
            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        shape = init_latents.shape
        noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        frames: Union[List[np.ndarray], torch.FloatTensor] = None,
        control_frames: Union[List[np.ndarray], torch.FloatTensor] = None,
        strength: float = 0.8,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        warp_start: Union[float, List[float]] = 0.0,
        warp_end: Union[float, List[float]] = 0.3,
        mask_start: Union[float, List[float]] = 0.5,
        mask_end: Union[float, List[float]] = 0.8,
        smooth_boundary: bool = True,
        mask_strength: Union[float, List[float]] = 0.5,
        inner_strength: Union[float, List[float]] = 0.9,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process.
            control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation.
            strength ('float'): SDEdit strength.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
                corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting
                than for [`~StableDiffusionControlNetPipeline.__call__`].
            guess_mode (`bool`, *optional*, defaults to `False`):
                In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
                you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the controlnet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the controlnet stops applying.
            warp_start (`float`): Shape-aware fusion start timestep.
            warp_end (`float`): Shape-aware fusion end timestep.
            mask_start (`float`): Pixel-aware fusion start timestep.
            mask_end (`float`):Pixel-aware fusion end timestep.
            smooth_boundary (`bool`): Smooth fusion boundary. Set `True` to prevent artifacts at boundary.
            mask_strength (`float`): Pixel-aware fusion strength.
            inner_strength (`float`): Pixel-aware fusion detail level.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
        )

        # 2. Define call parameters
        # Currently we only support 1 prompt
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            assert False
        else:
            assert False
        num_images_per_prompt = 1

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        # 4. Process the first frame
        height, width = None, None
        output_frames = []
        self.attn_state.reset()

        # 4.1 prepare frames
        image = self.image_processor.preprocess(frames[0]).to(dtype=torch.float32)
        first_image = image[0]  # C, H, W

        # 4.2 Prepare controlnet_conditioning_image
        # Currently we only support single control
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_frames[0],
                width=width,
                height=height,
                batch_size=batch_size,
                num_images_per_prompt=1,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
        else:
            assert False

        # 4.3 Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
        latent_timestep = timesteps[:1].repeat(batch_size)

        # 4.4 Prepare latent variables
        latents = self.prepare_latents(
            image,
            latent_timestep,
            batch_size,
            num_images_per_prompt,
            prompt_embeds.dtype,
            device,
            generator,
        )

        # 4.5 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 4.6 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

        first_x0_list = []

        # 4.7 Denoising loop
        num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order
        with self.progress_bar(total=cur_num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                self.attn_state.set_timestep(t.item())

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # controlnet(s) inference
                if guess_mode and do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                beta_prod_t = 1 - alpha_prod_t
                pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
                first_x0 = pred_x0.detach()
                first_x0_list.append(first_x0)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents

        first_result = image
        prev_result = image
        do_denormalize = [True] * image.shape[0]
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        output_frames.append(image[0])

        # 5. Process each frame
        for idx in range(1, len(frames)):
            image = frames[idx]
            prev_image = frames[idx - 1]
            control_image = control_frames[idx]
            # 5.1 prepare frames
            image = self.image_processor.preprocess(image).to(dtype=torch.float32)
            prev_image = self.image_processor.preprocess(prev_image).to(dtype=torch.float32)

            warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask(
                self.flow_model, first_image, image[0], first_result, False
            )
            blend_mask_0 = blur(F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4))
            blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1)

            warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask(
                self.flow_model, prev_image[0], image[0], prev_result, False
            )
            blend_mask_pre = blur(F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4))
            blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1)

            warp_mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8)
            warp_flow = F.interpolate(bwd_flow_0 / 8.0, scale_factor=1.0 / 8, mode="bilinear")

            # 5.2 Prepare controlnet_conditioning_image
            # Currently we only support single control
            if isinstance(controlnet, ControlNetModel):
                control_image = self.prepare_control_image(
                    image=control_image,
                    width=width,
                    height=height,
                    batch_size=batch_size,
                    num_images_per_prompt=1,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )
            else:
                assert False

            # 5.3 Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)
            timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
            latent_timestep = timesteps[:1].repeat(batch_size)

            skip_t = int(num_inference_steps * (1 - strength))
            warp_start_t = int(warp_start * num_inference_steps)
            warp_end_t = int(warp_end * num_inference_steps)
            mask_start_t = int(mask_start * num_inference_steps)
            mask_end_t = int(mask_end * num_inference_steps)

            # 5.4 Prepare latent variables
            init_latents = self.prepare_latents(
                image,
                latent_timestep,
                batch_size,
                num_images_per_prompt,
                prompt_embeds.dtype,
                device,
                generator,
            )

            # 5.5 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
            extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

            # 5.6 Create tensor stating which controlnets to keep
            controlnet_keep = []
            for i in range(len(timesteps)):
                keeps = [
                    1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                    for s, e in zip(control_guidance_start, control_guidance_end)
                ]
                controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)

            # 5.7 Denoising loop
            num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order

            def denoising_loop(latents, mask=None, xtrg=None, noise_rescale=None):
                dir_xt = 0
                latents_dtype = latents.dtype
                with self.progress_bar(total=cur_num_inference_steps) as progress_bar:
                    for i, t in enumerate(timesteps):
                        self.attn_state.set_timestep(t.item())
                        if i + skip_t >= mask_start_t and i + skip_t <= mask_end_t and xtrg is not None:
                            rescale = torch.maximum(1.0 - mask, (1 - mask**2) ** 0.5 * inner_strength)
                            if noise_rescale is not None:
                                rescale = (1.0 - mask) * (1 - noise_rescale) + rescale * noise_rescale
                            noise = randn_tensor(xtrg.shape, generator=generator, device=device, dtype=xtrg.dtype)
                            latents_ref = self.scheduler.add_noise(xtrg, noise, t)
                            latents = latents_ref * mask + (1.0 - mask) * (latents - dir_xt) + rescale * dir_xt
                            latents = latents.to(latents_dtype)

                        # expand the latents if we are doing classifier free guidance
                        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                        # controlnet(s) inference
                        if guess_mode and do_classifier_free_guidance:
                            # Infer ControlNet only for the conditional batch.
                            control_model_input = latents
                            control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                            controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                        else:
                            control_model_input = latent_model_input
                            controlnet_prompt_embeds = prompt_embeds

                        if isinstance(controlnet_keep[i], list):
                            cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                        else:
                            controlnet_cond_scale = controlnet_conditioning_scale
                            if isinstance(controlnet_cond_scale, list):
                                controlnet_cond_scale = controlnet_cond_scale[0]
                            cond_scale = controlnet_cond_scale * controlnet_keep[i]
                        down_block_res_samples, mid_block_res_sample = self.controlnet(
                            control_model_input,
                            t,
                            encoder_hidden_states=controlnet_prompt_embeds,
                            controlnet_cond=control_image,
                            conditioning_scale=cond_scale,
                            guess_mode=guess_mode,
                            return_dict=False,
                        )

                        if guess_mode and do_classifier_free_guidance:
                            # Infered ControlNet only for the conditional batch.
                            # To apply the output of ControlNet to both the unconditional and conditional batches,
                            # add 0 to the unconditional batch to keep it unchanged.
                            down_block_res_samples = [
                                torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples
                            ]
                            mid_block_res_sample = torch.cat(
                                [torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
                            )

                        # predict the noise residual
                        noise_pred = self.unet(
                            latent_model_input,
                            t,
                            encoder_hidden_states=prompt_embeds,
                            cross_attention_kwargs=cross_attention_kwargs,
                            down_block_additional_residuals=down_block_res_samples,
                            mid_block_additional_residual=mid_block_res_sample,
                            return_dict=False,
                        )[0]

                        # perform guidance
                        if do_classifier_free_guidance:
                            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                        # Get pred_x0 from scheduler
                        alpha_prod_t = self.scheduler.alphas_cumprod[t]
                        beta_prod_t = 1 - alpha_prod_t
                        pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

                        if i + skip_t >= warp_start_t and i + skip_t <= warp_end_t:
                            # warp x_0
                            pred_x0 = (
                                flow_warp(first_x0_list[i], warp_flow, mode="nearest") * warp_mask
                                + (1 - warp_mask) * pred_x0
                            )

                            # get x_t from x_0
                            latents = self.scheduler.add_noise(pred_x0, noise_pred, t).to(latents_dtype)

                        prev_t = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
                        if i == len(timesteps) - 1:
                            alpha_t_prev = 1.0
                        else:
                            alpha_t_prev = self.scheduler.alphas_cumprod[prev_t]

                        dir_xt = (1.0 - alpha_t_prev) ** 0.5 * noise_pred

                        # compute the previous noisy sample x_t -> x_t-1
                        latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[
                            0
                        ]

                        # call the callback, if provided
                        if i == len(timesteps) - 1 or (
                            (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                        ):
                            progress_bar.update()
                            if callback is not None and i % callback_steps == 0:
                                callback(i, t, latents)

                    return latents

            if mask_start_t <= mask_end_t:
                self.attn_state.to_load()
            else:
                self.attn_state.to_load_and_store_prev()
            latents = denoising_loop(init_latents)

            if mask_start_t <= mask_end_t:
                direct_result = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

                blend_results = (1 - blend_mask_pre) * warped_pre + blend_mask_pre * direct_result
                blend_results = (1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results

                bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1)
                blend_mask = blur(F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4))
                blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1)

                blend_results = blend_results.to(latents.dtype)
                xtrg = self.vae.encode(blend_results).latent_dist.sample(generator)
                xtrg = self.vae.config.scaling_factor * xtrg
                blend_results_rec = self.vae.decode(xtrg / self.vae.config.scaling_factor, return_dict=False)[0]
                xtrg_rec = self.vae.encode(blend_results_rec).latent_dist.sample(generator)
                xtrg_rec = self.vae.config.scaling_factor * xtrg_rec
                xtrg_ = xtrg + (xtrg - xtrg_rec)
                blend_results_rec_new = self.vae.decode(xtrg_ / self.vae.config.scaling_factor, return_dict=False)[0]
                tmp = (abs(blend_results_rec_new - blend_results).mean(dim=1, keepdims=True) > 0.25).float()

                mask_x = F.max_pool2d(
                    (F.interpolate(tmp, scale_factor=1 / 8.0, mode="bilinear") > 0).float(),
                    kernel_size=3,
                    stride=1,
                    padding=1,
                )

                mask = 1 - F.max_pool2d(1 - blend_mask, kernel_size=8)  # * (1-mask_x)

                if smooth_boundary:
                    noise_rescale = find_flat_region(mask)
                else:
                    noise_rescale = torch.ones_like(mask)

                xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask
                xtrg = xtrg.to(latents.dtype)

                self.scheduler.set_timesteps(num_inference_steps, device=device)
                timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)

                self.attn_state.to_load_and_store_prev()
                latents = denoising_loop(init_latents, mask * mask_strength, xtrg, noise_rescale)

            if not output_type == "latent":
                image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            else:
                image = latents

            prev_result = image

            do_denormalize = [True] * image.shape[0]
            image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

            output_frames.append(image[0])

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return output_frames

        return TextToVideoSDPipelineOutput(frames=output_frames)