Datasets:

ArXiv:
File size: 115,383 Bytes
4884e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
# Community Examples

> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

**Community** examples consist of both inference and training examples that have been added by the community.
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community doesn't work as expected, please open an issue and ping the author on it.

| Example                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                                              | Colab                                                                                                                                                                                                              |                                                        Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
| CLIP Guided Stable Diffusion                                                                                                          | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |                [Suraj Patil](https://github.com/patil-suraj/) | 
| One Step U-Net (Dummy)                                                                                                                | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                                          | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Stable Diffusion Interpolation                                                                                                        | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation)                         | -                                                                                                                                                                                                                  |                       [Nate Raw](https://github.com/nateraw/) |
| Stable Diffusion Mega                                                                                                                 | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                                           | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Long Prompt Weighting Stable Diffusion                                                                                                | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)         | -                                                                                                                                                                                                                  |                           [SkyTNT](https://github.com/SkyTNT) |
| Speech to Image                                                                                                                       | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                                                       | -                                                                                                                                                                                                                  |             [Mikail Duzenli](https://github.com/MikailINTech) 
| Wild Card Stable Diffusion                                                                                                            | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values                                                                                                                                                                                                                                                                            | [Wildcard Stable Diffusion](#wildcard-stable-diffusion)                                   | -                                                                                                                                                                                                                  |              [Shyam Sudhakaran](https://github.com/shyamsn97) |
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "|" in prompts (as an AND condition) and weights (separated by "|" as well) to positively / negatively weight prompts.                                                                                                                                                                                                                                                                                                            | [Composable Stable Diffusion](#composable-stable-diffusion)                               | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion                                                                                                        | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation.                                                                                                                                                                                                                                                                                                                                                                                       | [Seed Resizing](#seed-resizing)                                                           | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion                                                                                                               | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image                                                                                                                                                                                                                                                                                                                                                                                                                   | [Imagic Stable Diffusion](#imagic-stable-diffusion)                                       | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Multilingual Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in 50 different languages.                                                                                                                                                                                                                                                                                                                                                                                                                               | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline)                  | -                                                                                                                                                                                                                  |          [Juan Carlos Piñeros](https://github.com/juancopi81) |
| Image to Image Inpainting Stable Diffusion                                                                                            | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting                                                                                                                                                                                                                                                                                                                                                                                                            | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | -                                                                                                                                                                                                                  |                    [Alex McKinney](https://github.com/vvvm23) |
| Text Based Inpainting Stable Diffusion                                                                                                | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting                                                                                                                                                                                                                                                                                                                                                                                              | [Text Based Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion)     | -                                                                                                                                                                                                                  |                   [Dhruv Karan](https://github.com/unography) |
| Bit Diffusion                                                                                                                         | Diffusion on discrete data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Bit Diffusion](#bit-diffusion)                                                           | -  |                       [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion                                                                                                          | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py)                                                                                                                                                                                                                                                                                                                                                                  | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion)                   | -  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
| Checkpoint Merger Pipeline                                                                                                            | Diffusion Pipeline that enables merging of saved model checkpoints                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)                                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) | 
 Stable Diffusion v1.1-1.4 Comparison                                                                                                  | Run all 4 model checkpoints for Stable Diffusion and compare their results together                                                                                                                                                                                                                                                                                                                                                                                                                      | [Stable Diffusion Comparison](#stable-diffusion-comparisons)                              | - |        [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
 MagicMix                                                                                                                              | Diffusion Pipeline for semantic mixing of an image and a text prompt                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MagicMix](#magic-mix)                                                                    | - |                    [Partho Das](https://github.com/daspartho) |
| Stable UnCLIP                                                                                                                         | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ).                                                                                                                                                                                                                   | [Stable UnCLIP](#stable-unclip)                                                           | -  |                                [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline                                                                                                    | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline)                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) | 
| UnCLIP Image Interpolation Pipeline                                                                                                   | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline)               | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) | 
| DDIM Noise Comparative Analysis Pipeline                                                                                              | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227))                                                                                                                                                                                                                                                                                                                             | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline)     | - |              [Aengus (Duc-Anh)](https://github.com/aengusng8) |
| CLIP Guided Img2Img Stable Diffusion Pipeline                                                                                         | Doing CLIP guidance for image to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion)             | - |               [Nipun Jindal](https://github.com/nipunjindal/) | 
| TensorRT Stable Diffusion Text to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| EDICT Image Editing Pipeline                                                                                                          | Diffusion pipeline for text-guided image editing                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline)                             | - |                    [Joqsan Azocar](https://github.com/Joqsan) | 
| Stable Diffusion RePaint                                                                                                              | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.0986) for inpainting.                                                                                                                                                                                                                                                                                                                                                                                                               | [Stable Diffusion RePaint](#stable-diffusion-repaint )                                    | - |                  [Markus Pobitzer](https://github.com/Markus-Pobitzer) | 
| TensorRT Stable Diffusion Image to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) | 
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |  
| TensorRT Stable Diffusion Inpainting Pipeline                                                                                                    | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
|   IADB Pipeline                                                                                                    | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [IADB Pipeline](#iadb-pipeline)      | - |              [Thomas Chambon](https://github.com/tchambon) 
|   Zero1to3 Pipeline                                                                                                    | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zero1to3 Pipeline](#Zero1to3-pipeline)      | - |              [Xin Kong](https://github.com/kxhit) |
Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | - | [Andrew Zhu](https://xhinker.medium.com/) | 
FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | - | [Shauray Singh](https://shauray8.github.io/about_shauray/) | 
sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) | 
prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) | 
|   Latent Consistency Pipeline                                                                                                    | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Latent Consistency Pipeline](#latent-consistency-pipeline)      | - |              [Simian Luo](https://github.com/luosiallen) |
|   Latent Consistency Img2img Pipeline                                                                                                    | Img2img pipeline for Latent Consistency Models                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline)      | - |              [Logan Zoellner](https://github.com/nagolinc) |


To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
```py
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
```

## Example usages

### CLIP Guided Stable Diffusion

CLIP guided stable diffusion can help to generate more realistic images 
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
from transformers import CLIPImageProcessor, CLIPModel
import torch


feature_extractor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)
    
# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
Generated images tend to be of higher qualtiy than natively using stable diffusion. E.g. the above script generates the following images:

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

### One Step Unet

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see https://github.com/huggingface/diffusers/issues/841).

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    revision='fp16',
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion. 

> **Please have a look at https://github.com/nateraw/stable-diffusion-videos for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16")
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image

images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image

init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images

### Inpainting

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

### Long Prompt Weighting Stable Diffusion
Features of this custom pipeline:
- Input a prompt without the 77 token length limit.
- Includes tx2img, img2img. and inpainting pipelines.
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`

Prompt weighting equivalents:
- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`

You can run this custom pipeline as so:

#### pytorch

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    
    torch_dtype=torch.float16
)
pipe=pipe.to("cuda")

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt, negative_prompt=neg_prompt, width=512,height=512,max_embeddings_multiples=3).images[0]

```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

pipe.text2img(prompt,negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]

```

if you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```
This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)

### Wildcard Stable Diffusion
Following the great examples from https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py and https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:

Say we have a prompt:

```
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
```

We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.

The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.

The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:

`wildcard_files`: list of file paths for wild card replacement
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards

A full example:

create `animal.txt`, with contents like:

```
dog
cat
mouse
```

create `object.txt`, with contents like:

```
chair
sofa
bench
```

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="wildcard_stable_diffusion",
    
    torch_dtype=torch.float16,
)
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
out = pipe(
    prompt,
    wildcard_option_dict={
        "clothing":["hat", "shirt", "scarf", "beret"]
    },
    wildcard_files=["object.txt", "animal.txt"],
    num_prompt_samples=1
)
```

### Composable Stable diffusion 

[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.

```python
import torch as th
import numpy as np
import torchvision.utils as tvu

from diffusers import DiffusionPipeline

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark",
                    help="use '|' as the delimiter to compose separate sentences.")
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--scale", type=float, default=7.5)
parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5")
parser.add_argument("--seed", type=int, default=2)
parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--num_images", type=int, default=1)
args = parser.parse_args()

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

prompt = args.prompt
scale = args.scale
steps = args.steps

pipe = DiffusionPipeline.from_pretrained(
    args.model_path,
    custom_pipeline="composable_stable_diffusion",
).to(device)

pipe.safety_checker = None

images = []
generator = th.Generator("cuda").manual_seed(args.seed)
for i in range(args.num_images):
    image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,
                 weights=args.weights, generator=generator).images[0]
    images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')

```

### Imagic Stable Diffusion
Allows you to edit an image using stable diffusion. 

```python
import requests
from PIL import Image
from io import BytesIO
import torch
import os
from diffusers import DiffusionPipeline, DDIMScheduler
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
        safety_checker=None,
    use_auth_token=True,
    custom_pipeline="imagic_stable_diffusion",
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
).to(device)
generator = torch.Generator("cuda").manual_seed(0)
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
    prompt,
    image=init_image,
    generator=generator)
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
os.makedirs("imagic", exist_ok=True)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```

### Seed Resizing 
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.

```python
import torch as th
import numpy as np
from diffusers import DiffusionPipeline

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    use_auth_token=True,
    custom_pipeline="seed_resize_stable_diffusion"
).to(device)

def dummy(images, **kwargs):
    return images, False

pipe.safety_checker = dummy


images = []
th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

seed = 0
prompt = "A painting of a futuristic cop"

width = 512
height = 512

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))


th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    use_auth_token=True,
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

width = 512
height = 592

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))

pipe_compare = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    use_auth_token=True,
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

res = pipe_compare(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator
)

image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
```

### Multilingual Stable Diffusion Pipeline

The following code can generate an images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.

```python
from PIL import Image

import torch

from diffusers import DiffusionPipeline
from transformers import (
    pipeline,
    MBart50TokenizerFast,
    MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}

# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
                                       model=language_detection_model_ckpt,
                                       device=device_dict[device])

# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="multilingual_stable_diffusion",
    detection_pipeline=language_detection_pipeline,
    translation_model=trans_model,
    translation_tokenizer=trans_tokenizer,
    
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

prompt = ["a photograph of an astronaut riding a horse", 
          "Una casa en la playa",
          "Ein Hund, der Orange isst",
          "Un restaurant parisien"]

output = diffuser_pipeline(prompt)

images = output.images

grid = image_grid(images, rows=2, cols=2)
```

This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)

### Image to Image Inpainting Stable Diffusion

Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.

`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.

The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.

```python
import PIL
import torch

from diffusers import DiffusionPipeline

image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"

init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))

pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="img2img_inpainting",
    
    torch_dtype=torch.float16
)
pipe = pipe.to("cuda")

prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
```

![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)

### Text Based Inpainting Stable Diffusion

Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.

```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline

from PIL import Image
import requests

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")

pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="text_inpainting",
    segmentation_model=model,
    segmentation_processor=processor
)
pipe = pipe.to("cuda")


url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
text = "a glass"  # will mask out this text
prompt = "a cup"  # the masked out region will be replaced with this

image = pipe(image=image, text=text, prompt=prompt).images[0]
```

### Bit Diffusion 
Based https://arxiv.org/abs/2208.04202, this is used for diffusion on discrete data - eg, discreate image data, DNA sequence data. An unconditional discreate image can be generated like this: 

```python
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]

```

### Stable Diffusion with K Diffusion

Make sure you have @crowsonkb's https://github.com/crowsonkb/k-diffusion installed:

```
pip install k-diffusion
```

You can use the community pipeline as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
pipe.set_scheduler("sample_heun")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

image.save("./astronaut_heun_k_diffusion.png")
```

To make sure that K Diffusion and `diffusers` yield the same results:

**Diffusers**:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)

**K Diffusion**:
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

pipe.set_scheduler("sample_euler")
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

### Checkpoint Merger Pipeline
Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges upto 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.

The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect atleast 13GB RAM Usage on Kaggle GPU kernels and
on colab you might run out of the 12GB memory even while merging two checkpoints.

Usage:-
```python
from diffusers import DiffusionPipeline

#Return a CheckpointMergerPipeline class that allows you to merge checkpoints. 
#The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to 
#merge for convenience
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")

#There are multiple possible scenarios:
#The pipeline with the merged checkpoints is returned in all the scenarios

#Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","CompVis/stable-diffusion-v1-2"], interp = "sigmoid", alpha = 0.4)

#Incompatible checkpoints in model_index.json but merge might be possible. Use force = True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4","hakurei/waifu-diffusion"], force = True, interp = "sigmoid", alpha = 0.4)

#Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4","hakurei/waifu-diffusion","prompthero/openjourney"], force = True, interp = "add_difference", alpha = 0.4)

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]

```
Some examples along with the merge details:

1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8 

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)

2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8 

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)


3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5 

![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)


### Stable Diffusion Comparisons

This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:
1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)

```python
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt

pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
pipe.enable_attention_slicing()
pipe = pipe.to('cuda')
prompt = "an astronaut riding a horse on mars"
output = pipe(prompt)

plt.subplots(2,2,1)
plt.imshow(output.images[0])
plt.title('Stable Diffusion v1.1')
plt.axis('off')
plt.subplots(2,2,2)
plt.imshow(output.images[1])
plt.title('Stable Diffusion v1.2')
plt.axis('off')
plt.subplots(2,2,3)
plt.imshow(output.images[2])
plt.title('Stable Diffusion v1.3')
plt.axis('off')
plt.subplots(2,2,4)
plt.imshow(output.images[3])
plt.title('Stable Diffusion v1.4')
plt.axis('off')

plt.show()
```

As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.

### Magic Mix

Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://arxiv.org/abs/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.

There are 3 parameters for the method-
- `mix_factor`: It is the interpolation constant used in the layout generation phase. The greater the value of `mix_factor`, the greater the influence of the prompt on the layout generation process.
- `kmax` and `kmin`: These determine the range for the layout and content generation process. A higher value of kmax results in loss of more information about the layout of the original image and a higher value of kmin results in more steps for content generation process.

Here is an example usage-

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="magic_mix",
    scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
).to('cuda')

img = Image.open('phone.jpg')
mix_img = pipe(
    img, 
    prompt = 'bed', 
    kmin = 0.3,
    kmax = 0.5,
    mix_factor = 0.5,
    )
mix_img.save('phone_bed_mix.jpg')
```
The `mix_img` is a PIL image that can be saved locally or displayed directly in a google colab. Generated image is a mix of the layout semantics of the given image and the content semantics of the prompt.

E.g. the above script generates the following image:

`phone.jpg`

![206903102-34e79b9f-9ed2-4fac-bb38-82871343c655](https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg)

`phone_bed_mix.jpg`

![206903104-913a671d-ef53-4ae4-919d-64c3059c8f67](https://user-images.githubusercontent.com/59410571/209578602-70f323fa-05b7-4dd6-b055-e40683e37914.jpg)

For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).


### Stable UnCLIP

UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provide a prior model that can generate clip image embedding from text.
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provide a decoder model than can generate images from clip image embedding.

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipeline = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="stable_unclip",
    decoder_pipe_kwargs=dict(
        image_encoder=None,
    ),
)
pipeline.to(device)

prompt = "a shiba inu wearing a beret and black turtleneck"
random_generator = torch.Generator(device=device).manual_seed(1000)
output = pipeline(
    prompt=prompt,
    width=512,
    height=512,
    generator=random_generator,
    prior_guidance_scale=4,
    prior_num_inference_steps=25,
    decoder_guidance_scale=8,
    decoder_num_inference_steps=50,
)

image = output.images[0]
image.save("./shiba-inu.jpg")

# debug

# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
print(pipeline.decoder_pipe.__class__)
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>

# this pipeline only use prior module in "kakaobrain/karlo-v1-alpha"
# It is used to convert clip text embedding to clip image embedding.
print(pipeline)
# StableUnCLIPPipeline {
#   "_class_name": "StableUnCLIPPipeline",
#   "_diffusers_version": "0.12.0.dev0",
#   "prior": [
#     "diffusers",
#     "PriorTransformer"
#   ],
#   "prior_scheduler": [
#     "diffusers",
#     "UnCLIPScheduler"
#   ],
#   "text_encoder": [
#     "transformers",
#     "CLIPTextModelWithProjection"
#   ],
#   "tokenizer": [
#     "transformers",
#     "CLIPTokenizer"
#   ]
# }

# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
print(pipeline.prior_scheduler)
# UnCLIPScheduler {
#   "_class_name": "UnCLIPScheduler",
#   "_diffusers_version": "0.12.0.dev0",
#   "clip_sample": true,
#   "clip_sample_range": 5.0,
#   "num_train_timesteps": 1000,
#   "prediction_type": "sample",
#   "variance_type": "fixed_small_log"
# }
```


`shiba-inu.jpg`


![shiba-inu](https://user-images.githubusercontent.com/16448529/209185639-6e5ec794-ce9d-4883-aa29-bd6852a2abad.jpg)

### UnCLIP Text Interpolation Pipeline

This Diffusion Pipeline takes two prompts and interpolates between the two input prompts using spherical interpolation ( slerp ). The input prompts are converted to text embeddings by the pipeline's text_encoder and the interpolation is done on the resulting text_embeddings over the number of steps specified. Defaults to 5 steps. 

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="unclip_text_interpolation"
)
pipe.to(device)

start_prompt = "A photograph of an adult lion"
end_prompt = "A photograph of a lion cub"
#For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
generator = torch.Generator(device=device).manual_seed(42)

output = pipe(start_prompt, end_prompt, steps = 6, generator = generator, enable_sequential_cpu_offload=False)

for i,image in enumerate(output.images):
    img.save('result%s.jpg' % i)
```

The resulting images in order:-

![result_0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_0.png)
![result_1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_1.png)
![result_2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_2.png)
![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png)
![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png)
![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png)

### UnCLIP Image Interpolation Pipeline

This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps. 

```python
import torch
from diffusers import DiffusionPipeline
from PIL import Image

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha-image-variations",
    torch_dtype=dtype,
    custom_pipeline="unclip_image_interpolation"
)
pipe.to(device)

images = [Image.open('./starry_night.jpg'), Image.open('./flowers.jpg')]
#For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
generator = torch.Generator(device=device).manual_seed(42)

output = pipe(image = images ,steps = 6, generator = generator)

for i,image in enumerate(output.images):
    image.save('starry_to_flowers_%s.jpg' % i)
```
The original images:-

![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg)
![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg)

The resulting images in order:-

![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png)
![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png)
![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png)
![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png)
![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png)
![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png)

### DDIM Noise Comparative Analysis Pipeline
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**  
The [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.  
The approach consists of the following steps:

1. The input is an image x0.
2. Perturb it to xt using a diffusion process q(xt|x0).
    - `strength` is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
3. Reconstruct the image with the learned denoising process pθ(ˆx0|xt).
4. Compare x0 and ˆx0 among various t to show how each step contributes to the sample.
The authors used [openai/guided-diffusion](https://github.com/openai/guided-diffusion) model to denoise images in FFHQ dataset. This pipeline extends their second contribution by investigating DDIM on any input image.

```python
import torch
from PIL import Image
import numpy as np

image_path = "path/to/your/image" # images from CelebA-HQ might be better
image_pil = Image.open(image_path)
image_name = image_path.split("/")[-1].split(".")[0]

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
pipe = DiffusionPipeline.from_pretrained(
    "google/ddpm-ema-celebahq-256",
    custom_pipeline="ddim_noise_comparative_analysis",
)
pipe = pipe.to(device)

for strength in np.linspace(0.1, 1, 25):
    denoised_image, latent_timestep = pipe(
        image_pil, strength=strength, return_dict=False
    )
    denoised_image = denoised_image[0]
    denoised_image.save(
        f"noise_comparative_analysis_{image_name}_{latent_timestep}.png"
    )
```

Here is the result of this pipeline (which is DDIM) on CelebA-HQ dataset.

![noise-comparative-analysis](https://user-images.githubusercontent.com/67547213/224677066-4474b2ed-56ab-4c27-87c6-de3c0255eb9c.jpeg)

### CLIP Guided Img2Img Stable Diffusion

CLIP guided Img2Img stable diffusion can help to generate more realistic images with an initial image 
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
from transformers import CLIPFeatureExtractor, CLIPModel
feature_extractor = CLIPFeatureExtractor.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    # custom_pipeline="clip_guided_stable_diffusion",
    custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
image = guided_pipeline(
    prompt=prompt,
    num_inference_steps=30,
    image=init_image,
    strength=0.75,
    guidance_scale=7.5,
    clip_guidance_scale=100,
    num_cutouts=4,
    use_cutouts=False,
).images[0]
display(image)
```

Init Image

![img2img_init_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img_init.jpg)

Output Image

![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)

### TensorRT Text2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import torch
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")

pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                                custom_pipeline="stable_diffusion_tensorrt_txt2img",
                                                revision='fp16',
                                                torch_dtype=torch.float16,
                                                scheduler=scheduler,)

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", revision='fp16',)

pipe = pipe.to("cuda")

prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```

### EDICT Image Editing Pipeline

This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:
- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display

def center_crop_and_resize(im):

    width, height = im.size
    d = min(width, height)
    left = (width - d) / 2
    upper = (height - d) / 2
    right = (width + d) / 2
    lower = (height + d) / 2

    return im.crop((left, upper, right, lower)).resize((512, 512))

torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        clip_sample=False,
)

text_encoder = CLIPTextModel.from_pretrained(
    pretrained_model_name_or_path="openai/clip-vit-large-patch14",
    torch_dtype=torch_dtype,
)

# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    custom_pipeline="edict_pipeline",
    revision="fp16",
    scheduler=scheduler,
    text_encoder=text_encoder,
    leapfrog_steps=True,
    torch_dtype=torch_dtype,
).to(device)

# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))

# preprocess it
cropped_image = center_crop_and_resize(image)

# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"

# run the pipeline
result_image = pipeline(
      base_prompt=base_prompt, 
      target_prompt=target_prompt, 
      image=cropped_image,
)

display(result_image)
```

Init Image

![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)

Output Image

![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)

### Stable Diffusion RePaint

This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.

Make sure to use the ```RePaintScheduler``` as shown in the example below.

Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.

```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler
def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
pipe = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
```

### TensorRT Image2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionImg2ImgPipeline

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")


pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                                custom_pipeline="stable_diffusion_tensorrt_img2img",
                                                revision='fp16',
                                                torch_dtype=torch.float16,
                                                scheduler=scheduler,)

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", revision='fp16',)

pipe = pipe.to("cuda")

url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```

### Stable Diffusion Reference

This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
- `EulerAncestralDiscreteScheduler` got poor results.

```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

pipe = StableDiffusionReferencePipeline.from_pretrained(
       "runwayml/stable-diffusion-v1-5",
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image of `reference_attn=True` and `reference_adain=False`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)

Output Image of `reference_attn=False` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)

Output Image of `reference_attn=True` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)

### Stable Diffusion ControlNet Reference

This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1

```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
       "runwayml/stable-diffusion-v1-5",
       controlnet=controlnet,
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      image=canny_image,
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)


### Stable Diffusion on IPEX

This diffusion pipeline aims to accelarate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.

**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.
```python
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
# For Float32
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
# For BFloat16 
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.
```python
# For Float32
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
# For BFloat16 
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] #value of image height/width should be consistent with 'prepare_for_ipex()'
```

The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.

```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "runwayml/stable-diffusion-v1-5"
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
    #time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe)
    print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
    latency = elapsed_time(pipe2)
    print("Latency of StableDiffusionPipeline--bf16",latency)

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
print("Latency of StableDiffusionPipeline--fp32",latency)

```
  
### CLIP Guided Images Mixing With Stable Diffusion

![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)

CLIP guided stable diffusion images mixing pipeline allows to combine two images using standard diffusion models.  
This approach is using (optional) CoCa model to avoid writing image description.  
[More code examples](https://github.com/TheDenk/images_mixing)


### Stable Diffusion XL Long Weighted Prompt Pipeline

This SDXL pipeline support unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style. 

You can provide both `prompt` and `prompt_2`. if only one prompt is provided, `prompt_2` will be a copy of the provided `prompt`. Here is a sample code to use this pipeline. 

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
    , torch_dtype       = torch.float16
    , use_safetensors   = True
    , variant           = "fp16"
    , custom_pipeline   = "lpw_stable_diffusion_xl",
)

prompt = "photo of a cute (white) cat running on the grass"*20
prompt2 = "chasing (birds:1.5)"*20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality, carton, animate"

pipe.to("cuda")
images = pipe(
    prompt                  = prompt 
    , negative_prompt       = neg_prompt 
).images[0]

pipe.to("cpu")
torch.cuda.empty_cache()
images
```

In the above code, the `prompt2` is appended to the `prompt`, which is more than 77 tokens. "birds" are showing up in the result. 
![Stable Diffusion XL Long Weighted Prompt Pipeline sample](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_long_weighted_prompt.png)

## Example Images Mixing (with CoCa)
```python
import requests
from io import BytesIO

import PIL
import torch
import open_clip
from open_clip import SimpleTokenizer
from diffusers import DiffusionPipeline
from transformers import CLIPFeatureExtractor, CLIPModel


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

# Loading additional models
feature_extractor = CLIPFeatureExtractor.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
    coca_model.visual.image_size,
    is_train = False,
    mean = getattr(coca_model.visual, 'image_mean', None),
    std = getattr(coca_model.visual, 'image_std', None),
)
coca_tokenizer = SimpleTokenizer()

# Pipeline creating
mixing_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_images_mixing_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    coca_model=coca_model,
    coca_tokenizer=coca_tokenizer,
    coca_transform=coca_transform,
    torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")

# Pipeline running
generator = torch.Generator(device="cuda").manual_seed(17) 

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")

pipe_images = mixing_pipeline(
    num_inference_steps=50,
    content_image=content_image,
    style_image=style_image,
    noise_strength=0.65,
    slerp_latent_style_strength=0.9,
    slerp_prompt_style_strength=0.1,
    slerp_clip_image_style_strength=0.1,
    guidance_scale=9.0,
    batch_size=1,
    clip_guidance_scale=100,
    generator=generator,
).images
```

![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)

### Stable Diffusion Mixture Tiling

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
    
```python
from diffusers import LMSDiscreteScheduler, DiffusionPipeline

# Creater scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")

# Mixture of Diffusers generation
image = pipeline(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=640,
    tile_width=640,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale=8,
    seed=7178915308,
    num_inference_steps=50,
)["images"][0]
```
![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)

### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline

# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")


pipe = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="stable_diffusion_tensorrt_inpaint",
    revision='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,
    )

# re-use cached folder to save ONNX models and TensorRT Engines
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", revision='fp16',)

pipe = pipe.to("cuda")

url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
```

### Stable Diffusion Mixture Canvas

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
    
```python
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
from diffusers.pipelines.pipeline_utils import Image2ImageRegion, Text2ImageRegion, preprocess_image


# Load and preprocess guide image
iic_image = preprocess_image(Image.open("input_image.png").convert("RGB"))

# Creater scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda:0", custom_pipeline="mixture_canvas")
pipeline.to("cuda")

# Mixture of Diffusers generation
output = pipeline(
    canvas_height=800,
    canvas_width=352,
    regions=[
        Text2ImageRegion(0, 800, 0, 352, guidance_scale=8,
            prompt=f"best quality, masterpiece, WLOP, sakimichan, art contest winner on pixiv, 8K, intricate details, wet effects, rain drops, ethereal, mysterious, futuristic, UHD, HDR, cinematic lighting, in a beautiful forest, rainy day, award winning, trending on artstation, beautiful confident cheerful young woman, wearing a futuristic sleeveless dress, ultra beautiful detailed  eyes, hyper-detailed face, complex,  perfect, model,  textured,  chiaroscuro, professional make-up, realistic, figure in frame, "),
        Image2ImageRegion(352-800, 352, 0, 352, reference_image=iic_image, strength=1.0),
    ],
    num_inference_steps=100,
    seed=5525475061,
)["images"][0]
```
![Input_Image](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/input_image.png)
![mixture_canvas_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/canvas.png)


### IADB pipeline

This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) paper.
It is a simple and minimalist diffusion model.

The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.

```python

pipeline_iadb = DiffusionPipeline.from_pretrained("thomasc4/iadb-celebahq-256", custom_pipeline='iadb')

pipeline_iadb = pipeline_iadb.to('cuda')

output = pipeline_iadb(batch_size=4,num_inference_steps=128)
for i in range(len(output[0])):
    plt.imshow(output[0][i])
    plt.show()

```

Sampling with the IADB formulation is easy, and can be done in a few lines (the pipeline already implements it):

```python

def sample_iadb(model, x0, nb_step):
    x_alpha = x0
    for t in range(nb_step):
        alpha = (t/nb_step)
        alpha_next =((t+1)/nb_step)

        d = model(x_alpha, torch.tensor(alpha, device=x_alpha.device))['sample']
        x_alpha = x_alpha + (alpha_next-alpha)*d

    return x_alpha

```

The training loop is also straightforward:

```python

# Training loop
while True:
    x0 = sample_noise()
    x1 = sample_dataset()

    alpha = torch.rand(batch_size)

    # Blend
    x_alpha = (1-alpha) * x0 + alpha * x1

    # Loss
    loss = torch.sum((D(x_alpha, alpha)- (x1-x0))**2)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

### Zero1to3 pipeline

This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).

The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.

```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image

model_id = "kxic/zero123-165000" # zero123-105000, zero123-165000, zero123-xl

pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")

num_images_per_prompt = 4

# test inference pipeline
# x y z, Polar angle (vertical rotation in degrees) 	Azimuth angle (horizontal rotation in degrees) 	Zoom (relative distance from center)
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]

# load image
# H, W = (256, 256) # H, W = (512, 512)   # zero123 training is 256,256

# for batch input
input_image1 = load_image("./demo/4_blackarm.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png") #load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]

# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]


# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image

pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
    input_images = [input_images]
for raw_im in input_images:
    input_im = preprocess_image(models, raw_im, True)
    H, W = input_im.shape[:2]
    pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images

# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
              guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images


# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
    for idx in range(num_images_per_prompt):
        images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
        i += 1

```

### Stable Diffusion XL Reference

This pipeline uses the Reference . Refer to the [stable_diffusion_reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference).


```py
import torch
from PIL import Image
from diffusers.utils import load_image
from diffusers import DiffusionPipeline
from diffusers.schedulers import UniPCMultistepScheduler
input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# pipe = DiffusionPipeline.from_pretrained(
#     "stabilityai/stable-diffusion-xl-base-1.0",
#     custom_pipeline="stable_diffusion_xl_reference",
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16").to('cuda:0')

pipe = StableDiffusionXLReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16").to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image   

`prompt: 1 girl`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
![Output_image](https://github.com/zideliu/diffusers/assets/34944964/743848da-a215-48f9-ae39-b5e2ae49fb13)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)


Output Image 

`prompt: A dog`

`reference_attn=True, reference_adain=False, num_inference_steps=20`
![Output_image](https://github.com/huggingface/diffusers/assets/34944964/fff2f16f-6e91-434b-abcc-5259d866c31e)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/077ed4fe-2991-4b79-99a1-009f056227d1)

Output Image

`prompt: An astronaut riding a lion`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)

### Stable diffusion fabric pipeline

FABRIC approach applicable to a wide range of popular diffusion models, which exploits
the self-attention layer present in the most widely used architectures to condition
the diffusion process on a set of feedback images.


```python
import requests
import torch
from PIL import Image
from io import BytesIO

from diffusers import Diffusionpipeline

# load the pipeline
# make sure you're logged in with `huggingface-cli login`
model_id_or_path = "runwayml/stable-diffusion-v1-5"
#can also be used with dreamlike-art/dreamlike-photoreal-2.0
pipe = DiffusionPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric").to("cuda")

# let's specify a prompt
prompt = "An astronaut riding an elephant"
negative_prompt = "lowres, cropped"

# call the pipeline
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.manual_seed(12)
).images[0]

image.save("horse_to_elephant.jpg")

# let's try another example with feedback
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photo, A blue colored car, fish eye"
liked = [init_image]
## same goes with disliked

# call the pipeline
torch.manual_seed(0)
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    liked = liked,
    num_inference_steps=20,
).images[0]

image.save("black_to_blue.png")
```

*With enough feedbacks you can create very similar high quality images.*

The original codebase can be found at [sd-fabric/fabric](https://github.com/sd-fabric/fabric), and available checkpoints are [dreamlike-art/dreamlike-photoreal-2.0](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0), [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), and [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (may give unexpected results).

Let's have a look at the images (*512X512*)

| Without Feedback            | With Feedback  (1st image)          |
|---------------------|---------------------|
| ![Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_wo_feedback.jpg) | ![Feedback Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_w_feedback.png) | 


### Masked Im2Im Stable Diffusion Pipeline

This pipeline reimplements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask.

```python
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")
neq = numpy.any(numpy.array(img) != numpy.array(img_paint), axis=-1)
mask = neq / neq.max()

pipeline = MaskedStableDiffusionImg2ImgPipeline.from_pretrained("frankjoshua/icbinpICantBelieveIts_v8")

# works best with EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cpu").manual_seed(4)

prompt = "a man wearing a mask"
result = pipeline(prompt=prompt, image=img_paint, mask=mask, strength=0.75,
                  generator=generator)
result.images[0].save("result.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

result:

<img src=https://github.com/noskill/diffusers/assets/733626/23a0a71d-51db-471e-926a-107ac62512a8 width="25%" >


### Prompt2Prompt Pipeline

Prompt2Prompt allows the following edits:
- ReplaceEdit (change words in prompt)
- ReplaceEdit with local blend (change words in prompt, keep image part unrelated to changes constant)
- RefineEdit (add words to prompt)
- RefineEdit with local blend (add words to prompt, keep image part unrelated to changes constant)
- ReweightEdit (modulate importance of words)

Here's a full example for `ReplaceEdit``:

```python
import torch
import numpy as np
import matplotlib.pyplot as plt
from diffusers.pipelines import Prompt2PromptPipeline

pipe = Prompt2PromptPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda")

prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4
}

outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```

And abbreviated examples for the other edits:

`ReplaceEdit with local blend`
```python
prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["turtle", "monkey"]
}
```

`RefineEdit`
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
}
```

`RefineEdit with local blend`
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["in", "a" , "forest"]
}
```

`ReweightEdit`
```python
prompts = ["A smiling turtle"] * 2

edit_kcross_attention_kwargswargs = {
    "edit_type": "reweight",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "equalizer_words": ["smiling"],
    "equalizer_strengths": [5]
}
```

Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c73f3ade2869e36164) if you want to visualize the attention maps.

### Latent Consistency Pipeline

Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by *Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao* from Tsinghua University.

The abstract of the paper reads as follows:

*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/)*

The model can be used with `diffusers` as follows:

 - *1. Load the model from the community pipeline.*

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4 

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

For any questions or feedback, feel free to reach out to [Simian Luo](https://github.com/luosiallen).

You can also try this pipeline directly in the [🚀 official spaces](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).



### Latent Consistency Img2img Pipeline

This pipeline extends the Latent Consistency Pipeline to allow it to take an input image.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_img2img")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"


input_image=Image.open("myimg.png")

strength = 0.5 #strength =0 (no change) strength=1 (completely overwrite image)

# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4 

images = pipe(prompt=prompt, image=input_image, strength=strength, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```