Datasets:

ArXiv:
File size: 19,619 Bytes
ae21657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# -*- coding: utf-8 -*-
import inspect
from typing import Optional, Union

import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
    PIL_INTERPOLATION,
    randn_tensor,
)


def preprocess(image, w, h):
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
    return image


def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    if not isinstance(v0, np.ndarray):
        inputs_are_torch = True
        input_device = v0.device
        v0 = v0.cpu().numpy()
        v1 = v1.cpu().numpy()

    dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
    if np.abs(dot) > DOT_THRESHOLD:
        v2 = (1 - t) * v0 + t * v1
    else:
        theta_0 = np.arccos(dot)
        sin_theta_0 = np.sin(theta_0)
        theta_t = theta_0 * t
        sin_theta_t = np.sin(theta_t)
        s0 = np.sin(theta_0 - theta_t) / sin_theta_0
        s1 = sin_theta_t / sin_theta_0
        v2 = s0 * v0 + s1 * v1

    if inputs_are_torch:
        v2 = torch.from_numpy(v2).to(input_device)

    return v2


def spherical_dist_loss(x, y):
    x = F.normalize(x, dim=-1)
    y = F.normalize(y, dim=-1)
    return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)


def set_requires_grad(model, value):
    for param in model.parameters():
        param.requires_grad = value


class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        clip_model: CLIPModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
        feature_extractor: CLIPFeatureExtractor,
        coca_model=None,
        coca_tokenizer=None,
        coca_transform=None,
    ):
        super().__init__()
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            clip_model=clip_model,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            coca_model=coca_model,
            coca_tokenizer=coca_tokenizer,
            coca_transform=coca_transform,
        )
        self.feature_extractor_size = (
            feature_extractor.size
            if isinstance(feature_extractor.size, int)
            else feature_extractor.size["shortest_edge"]
        )
        self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
        set_requires_grad(self.text_encoder, False)
        set_requires_grad(self.clip_model, False)

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        self.enable_attention_slicing(None)

    def freeze_vae(self):
        set_requires_grad(self.vae, False)

    def unfreeze_vae(self):
        set_requires_grad(self.vae, True)

    def freeze_unet(self):
        set_requires_grad(self.unet, False)

    def unfreeze_unet(self):
        set_requires_grad(self.unet, True)

    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:]

        return timesteps, num_inference_steps - t_start

    def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
        if not isinstance(image, torch.Tensor):
            raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}")

        image = image.to(device=device, dtype=dtype)

        if isinstance(generator, list):
            init_latents = [
                self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
            ]
            init_latents = torch.cat(init_latents, dim=0)
        else:
            init_latents = self.vae.encode(image).latent_dist.sample(generator)

        # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
        init_latents = 0.18215 * init_latents
        init_latents = init_latents.repeat_interleave(batch_size, dim=0)

        noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)

        # get latents
        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
        latents = init_latents

        return latents

    def get_image_description(self, image):
        transformed_image = self.coca_transform(image).unsqueeze(0)
        with torch.no_grad(), torch.cuda.amp.autocast():
            generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype))
        generated = self.coca_tokenizer.decode(generated[0].cpu().numpy())
        return generated.split("<end_of_text>")[0].replace("<start_of_text>", "").rstrip(" .,")

    def get_clip_image_embeddings(self, image, batch_size):
        clip_image_input = self.feature_extractor.preprocess(image)
        clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half()
        image_embeddings_clip = self.clip_model.get_image_features(clip_image_features)
        image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
        image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0)
        return image_embeddings_clip

    @torch.enable_grad()
    def cond_fn(
        self,
        latents,
        timestep,
        index,
        text_embeddings,
        noise_pred_original,
        original_image_embeddings_clip,
        clip_guidance_scale,
    ):
        latents = latents.detach().requires_grad_()

        latent_model_input = self.scheduler.scale_model_input(latents, timestep)

        # predict the noise residual
        noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample

        if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)):
            alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
            beta_prod_t = 1 - alpha_prod_t
            # compute predicted original sample from predicted noise also called
            # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
            pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

            fac = torch.sqrt(beta_prod_t)
            sample = pred_original_sample * (fac) + latents * (1 - fac)
        elif isinstance(self.scheduler, LMSDiscreteScheduler):
            sigma = self.scheduler.sigmas[index]
            sample = latents - sigma * noise_pred
        else:
            raise ValueError(f"scheduler type {type(self.scheduler)} not supported")

        # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
        sample = 1 / 0.18215 * sample
        image = self.vae.decode(sample).sample
        image = (image / 2 + 0.5).clamp(0, 1)

        image = transforms.Resize(self.feature_extractor_size)(image)
        image = self.normalize(image).to(latents.dtype)

        image_embeddings_clip = self.clip_model.get_image_features(image)
        image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)

        loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale

        grads = -torch.autograd.grad(loss, latents)[0]

        if isinstance(self.scheduler, LMSDiscreteScheduler):
            latents = latents.detach() + grads * (sigma**2)
            noise_pred = noise_pred_original
        else:
            noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
        return noise_pred, latents

    @torch.no_grad()
    def __call__(
        self,
        style_image: Union[torch.FloatTensor, PIL.Image.Image],
        content_image: Union[torch.FloatTensor, PIL.Image.Image],
        style_prompt: Optional[str] = None,
        content_prompt: Optional[str] = None,
        height: Optional[int] = 512,
        width: Optional[int] = 512,
        noise_strength: float = 0.6,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        batch_size: Optional[int] = 1,
        eta: float = 0.0,
        clip_guidance_scale: Optional[float] = 100,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        slerp_latent_style_strength: float = 0.8,
        slerp_prompt_style_strength: float = 0.1,
        slerp_clip_image_style_strength: float = 0.1,
    ):
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if isinstance(generator, torch.Generator) and batch_size > 1:
            generator = [generator] + [None] * (batch_size - 1)

        coca_is_none = [
            ("model", self.coca_model is None),
            ("tokenizer", self.coca_tokenizer is None),
            ("transform", self.coca_transform is None),
        ]
        coca_is_none = [x[0] for x in coca_is_none if x[1]]
        coca_is_none_str = ", ".join(coca_is_none)
        # generate prompts with coca model if prompt is None
        if content_prompt is None:
            if len(coca_is_none):
                raise ValueError(
                    f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
                    f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
                )
            content_prompt = self.get_image_description(content_image)
        if style_prompt is None:
            if len(coca_is_none):
                raise ValueError(
                    f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
                    f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline."
                )
            style_prompt = self.get_image_description(style_image)

        # get prompt text embeddings for content and style
        content_text_input = self.tokenizer(
            content_prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0]

        style_text_input = self.tokenizer(
            style_prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0]

        text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings)

        # duplicate text embeddings for each generation per prompt
        text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0)

        # set timesteps
        accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {}
        if accepts_offset:
            extra_set_kwargs["offset"] = 1

        self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
        # Some schedulers like PNDM have timesteps as arrays
        # It's more optimized to move all timesteps to correct device beforehand
        self.scheduler.timesteps.to(self.device)

        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device)
        latent_timestep = timesteps[:1].repeat(batch_size)

        # Preprocess image
        preprocessed_content_image = preprocess(content_image, width, height)
        content_latents = self.prepare_latents(
            preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
        )

        preprocessed_style_image = preprocess(style_image, width, height)
        style_latents = self.prepare_latents(
            preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator
        )

        latents = slerp(slerp_latent_style_strength, content_latents, style_latents)

        if clip_guidance_scale > 0:
            content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size)
            style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size)
            clip_image_embeddings = slerp(
                slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding
            )

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            max_length = content_text_input.input_ids.shape[-1]
            uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
            # duplicate unconditional embeddings for each generation per prompt
            uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # get the initial random noise unless the user supplied it

        # Unlike in other pipelines, latents need to be generated in the target device
        # for 1-to-1 results reproducibility with the CompVis implementation.
        # However this currently doesn't work in `mps`.
        latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
        latents_dtype = text_embeddings.dtype
        if latents is None:
            if self.device.type == "mps":
                # randn does not work reproducibly on mps
                latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
                    self.device
                )
            else:
                latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
            latents = latents.to(self.device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator

        with self.progress_bar(total=num_inference_steps):
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

                # perform classifier free guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # perform clip guidance
                if clip_guidance_scale > 0:
                    text_embeddings_for_guidance = (
                        text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
                    )
                    noise_pred, latents = self.cond_fn(
                        latents,
                        t,
                        i,
                        text_embeddings_for_guidance,
                        noise_pred,
                        clip_image_embeddings,
                        clip_guidance_scale,
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

        # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, None)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)