Datasets:

ArXiv:
File size: 46,586 Bytes
38d00eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
# Copyright 2023 Long Lian, the GLIGEN Authors, and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This is a single file implementation of LMD+. See README.md for examples.

import ast
import gc
import math
import warnings
from collections.abc import Iterable
from typing import Any, Callable, Dict, List, Optional, Union

import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention import Attention, GatedSelfAttentionDense
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging, replace_example_docstring


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline

        >>> pipe = DiffusionPipeline.from_pretrained(
        ...     "longlian/lmd_plus",
        ...     custom_pipeline="llm_grounded_diffusion",
        ...     variant="fp16", torch_dtype=torch.float16
        ... )
        >>> pipe.enable_model_cpu_offload()

        >>> # Generate an image described by the prompt and
        >>> # insert objects described by text at the region defined by bounding boxes
        >>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
        >>> boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
        >>> phrases = ["a waterfall", "a modern high speed train"]

        >>> images = pipe(
        ...     prompt=prompt,
        ...     phrases=phrases,
        ...     boxes=boxes,
        ...     gligen_scheduled_sampling_beta=0.4,
        ...     output_type="pil",
        ...     num_inference_steps=50,
        ...     lmd_guidance_kwargs={}
        ... ).images

        >>> images[0].save("./lmd_plus_generation.jpg")

        >>> # Generate directly from a text prompt and an LLM response
        >>> prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
        >>> phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response(\"""
        [('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
        Background prompt: A beautiful forest with fall foliage
        Negative prompt:
        \""")

        >> images = pipe(
        ...     prompt=prompt,
        ...     negative_prompt=neg_prompt,
        ...     phrases=phrases,
        ...     boxes=boxes,
        ...     gligen_scheduled_sampling_beta=0.4,
        ...     output_type="pil",
        ...     num_inference_steps=50,
        ...     lmd_guidance_kwargs={}
        ... ).images

        >>> images[0].save("./lmd_plus_generation.jpg")

images[0]

        ```
"""

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# All keys in Stable Diffusion models: [('down', 0, 0, 0), ('down', 0, 1, 0), ('down', 1, 0, 0), ('down', 1, 1, 0), ('down', 2, 0, 0), ('down', 2, 1, 0), ('mid', 0, 0, 0), ('up', 1, 0, 0), ('up', 1, 1, 0), ('up', 1, 2, 0), ('up', 2, 0, 0), ('up', 2, 1, 0), ('up', 2, 2, 0), ('up', 3, 0, 0), ('up', 3, 1, 0), ('up', 3, 2, 0)]
# Note that the first up block is `UpBlock2D` rather than `CrossAttnUpBlock2D` and does not have attention. The last index is always 0 in our case since we have one `BasicTransformerBlock` in each `Transformer2DModel`.
DEFAULT_GUIDANCE_ATTN_KEYS = [("mid", 0, 0, 0), ("up", 1, 0, 0), ("up", 1, 1, 0), ("up", 1, 2, 0)]


def convert_attn_keys(key):
    """Convert the attention key from tuple format to the torch state format"""

    if key[0] == "mid":
        assert key[1] == 0, f"mid block only has one block but the index is {key[1]}"
        return f"{key[0]}_block.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"

    return f"{key[0]}_blocks.{key[1]}.attentions.{key[2]}.transformer_blocks.{key[3]}.attn2.processor"


DEFAULT_GUIDANCE_ATTN_KEYS = [convert_attn_keys(key) for key in DEFAULT_GUIDANCE_ATTN_KEYS]


def scale_proportion(obj_box, H, W):
    # Separately rounding box_w and box_h to allow shift invariant box sizes. Otherwise box sizes may change when both coordinates being rounded end with ".5".
    x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H)
    box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H)
    x_max, y_max = x_min + box_w, y_min + box_h

    x_min, y_min = max(x_min, 0), max(y_min, 0)
    x_max, y_max = min(x_max, W), min(y_max, H)

    return x_min, y_min, x_max, y_max


# Adapted from the parent class `AttnProcessor2_0`
class AttnProcessorWithHook(AttnProcessor2_0):
    def __init__(self, attn_processor_key, hidden_size, cross_attention_dim, hook=None, fast_attn=True, enabled=True):
        super().__init__()
        self.attn_processor_key = attn_processor_key
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.hook = hook
        self.fast_attn = fast_attn
        self.enabled = enabled

    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        scale: float = 1.0,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states, scale=scale)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states, scale=scale)
        value = attn.to_v(encoder_hidden_states, scale=scale)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        if (self.hook is not None and self.enabled) or not self.fast_attn:
            query_batch_dim = attn.head_to_batch_dim(query)
            key_batch_dim = attn.head_to_batch_dim(key)
            value_batch_dim = attn.head_to_batch_dim(value)
            attention_probs = attn.get_attention_scores(query_batch_dim, key_batch_dim, attention_mask)

        if self.hook is not None and self.enabled:
            # Call the hook with query, key, value, and attention maps
            self.hook(self.attn_processor_key, query_batch_dim, key_batch_dim, value_batch_dim, attention_probs)

        if self.fast_attn:
            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            if attention_mask is not None:
                # scaled_dot_product_attention expects attention_mask shape to be
                # (batch, heads, source_length, target_length)
                attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )
            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            hidden_states = hidden_states.to(query.dtype)
        else:
            hidden_states = torch.bmm(attention_probs, value)
            hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states, scale=scale)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class LLMGroundedDiffusionPipeline(StableDiffusionPipeline):
    r"""
    Pipeline for layout-grounded text-to-image generation using LLM-grounded Diffusion (LMD+): https://arxiv.org/pdf/2305.13655.pdf.

    This model inherits from [`StableDiffusionPipeline`] and aims at implementing the pipeline with minimal modifications. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    This is a simplified implementation that does not perform latent or attention transfer from single object generation to overall generation. The final image is generated directly with attention and adapters control.

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
        requires_safety_checker (bool):
            Whether a safety checker is needed for this pipeline.
    """

    objects_text = "Objects: "
    bg_prompt_text = "Background prompt: "
    bg_prompt_text_no_trailing_space = bg_prompt_text.rstrip()
    neg_prompt_text = "Negative prompt: "
    neg_prompt_text_no_trailing_space = neg_prompt_text.rstrip()

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        super().__init__(
            vae, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker
        )

        self.register_attn_hooks(unet)
        self._saved_attn = None

    def attn_hook(self, name, query, key, value, attention_probs):
        if name in DEFAULT_GUIDANCE_ATTN_KEYS:
            self._saved_attn[name] = attention_probs

    @classmethod
    def convert_box(cls, box, height, width):
        # box: x, y, w, h (in 512 format) -> x_min, y_min, x_max, y_max
        x_min, y_min = box[0] / width, box[1] / height
        w_box, h_box = box[2] / width, box[3] / height

        x_max, y_max = x_min + w_box, y_min + h_box

        return x_min, y_min, x_max, y_max

    @classmethod
    def _parse_response_with_negative(cls, text):
        if not text:
            raise ValueError("LLM response is empty")

        if cls.objects_text in text:
            text = text.split(cls.objects_text)[1]

        text_split = text.split(cls.bg_prompt_text_no_trailing_space)
        if len(text_split) == 2:
            gen_boxes, text_rem = text_split
        else:
            raise ValueError(f"LLM response is incomplete: {text}")

        text_split = text_rem.split(cls.neg_prompt_text_no_trailing_space)

        if len(text_split) == 2:
            bg_prompt, neg_prompt = text_split
        else:
            raise ValueError(f"LLM response is incomplete: {text}")

        try:
            gen_boxes = ast.literal_eval(gen_boxes)
        except SyntaxError as e:
            # Sometimes the response is in plain text
            if "No objects" in gen_boxes or gen_boxes.strip() == "":
                gen_boxes = []
            else:
                raise e
        bg_prompt = bg_prompt.strip()
        neg_prompt = neg_prompt.strip()

        # LLM may return "None" to mean no negative prompt provided.
        if neg_prompt == "None":
            neg_prompt = ""

        return gen_boxes, bg_prompt, neg_prompt

    @classmethod
    def parse_llm_response(cls, response, canvas_height=512, canvas_width=512):
        # Infer from spec
        gen_boxes, bg_prompt, neg_prompt = cls._parse_response_with_negative(text=response)

        gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0])

        phrases = [name for name, _ in gen_boxes]
        boxes = [cls.convert_box(box, height=canvas_height, width=canvas_width) for _, box in gen_boxes]

        return phrases, boxes, bg_prompt, neg_prompt

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        phrases,
        boxes,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        phrase_indices=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
        elif prompt is None and phrase_indices is None:
            raise ValueError("If the prompt is None, the phrase_indices cannot be None")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if len(phrases) != len(boxes):
            ValueError(
                "length of `phrases` and `boxes` has to be same, but"
                f" got: `phrases` {len(phrases)} != `boxes` {len(boxes)}"
            )

    def register_attn_hooks(self, unet):
        """Registering hooks to obtain the attention maps for guidance"""

        attn_procs = {}

        for name in unet.attn_processors.keys():
            # Only obtain the queries and keys from cross-attention
            if name.endswith("attn1.processor") or name.endswith("fuser.attn.processor"):
                # Keep the same attn_processors for self-attention (no hooks for self-attention)
                attn_procs[name] = unet.attn_processors[name]
                continue

            cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim

            if name.startswith("mid_block"):
                hidden_size = unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = unet.config.block_out_channels[block_id]

            attn_procs[name] = AttnProcessorWithHook(
                attn_processor_key=name,
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
                hook=self.attn_hook,
                fast_attn=True,
                # Not enabled by default
                enabled=False,
            )

        unet.set_attn_processor(attn_procs)

    def enable_fuser(self, enabled=True):
        for module in self.unet.modules():
            if isinstance(module, GatedSelfAttentionDense):
                module.enabled = enabled

    def enable_attn_hook(self, enabled=True):
        for module in self.unet.attn_processors.values():
            if isinstance(module, AttnProcessorWithHook):
                module.enabled = enabled

    def get_token_map(self, prompt, padding="do_not_pad", verbose=False):
        """Get a list of mapping: prompt index to str (prompt in a list of token str)"""
        fg_prompt_tokens = self.tokenizer([prompt], padding=padding, max_length=77, return_tensors="np")
        input_ids = fg_prompt_tokens["input_ids"][0]

        token_map = []
        for ind, item in enumerate(input_ids.tolist()):
            token = self.tokenizer._convert_id_to_token(item)

            if verbose:
                logger.info(f"{ind}, {token} ({item})")

            token_map.append(token)

        return token_map

    def get_phrase_indices(self, prompt, phrases, token_map=None, add_suffix_if_not_found=False, verbose=False):
        for obj in phrases:
            # Suffix the prompt with object name for attention guidance if object is not in the prompt, using "|" to separate the prompt and the suffix
            if obj not in prompt:
                prompt += "| " + obj

        if token_map is None:
            # We allow using a pre-computed token map.
            token_map = self.get_token_map(prompt=prompt, padding="do_not_pad", verbose=verbose)
        token_map_str = " ".join(token_map)

        phrase_indices = []

        for obj in phrases:
            phrase_token_map = self.get_token_map(prompt=obj, padding="do_not_pad", verbose=verbose)
            # Remove <bos> and <eos> in substr
            phrase_token_map = phrase_token_map[1:-1]
            phrase_token_map_len = len(phrase_token_map)
            phrase_token_map_str = " ".join(phrase_token_map)

            if verbose:
                logger.info("Full str:", token_map_str, "Substr:", phrase_token_map_str, "Phrase:", phrases)

            # Count the number of token before substr
            # The substring comes with a trailing space that needs to be removed by minus one in the index.
            obj_first_index = len(token_map_str[: token_map_str.index(phrase_token_map_str) - 1].split(" "))

            obj_position = list(range(obj_first_index, obj_first_index + phrase_token_map_len))
            phrase_indices.append(obj_position)

        if add_suffix_if_not_found:
            return phrase_indices, prompt

        return phrase_indices

    def add_ca_loss_per_attn_map_to_loss(
        self,
        loss,
        attn_map,
        object_number,
        bboxes,
        phrase_indices,
        fg_top_p=0.2,
        bg_top_p=0.2,
        fg_weight=1.0,
        bg_weight=1.0,
    ):
        # b is the number of heads, not batch
        b, i, j = attn_map.shape
        H = W = int(math.sqrt(i))
        for obj_idx in range(object_number):
            obj_loss = 0
            mask = torch.zeros(size=(H, W), device="cuda")
            obj_boxes = bboxes[obj_idx]

            # We support two level (one box per phrase) and three level (multiple boxes per phrase)
            if not isinstance(obj_boxes[0], Iterable):
                obj_boxes = [obj_boxes]

            for obj_box in obj_boxes:
                # x_min, y_min, x_max, y_max = int(obj_box[0] * W), int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
                x_min, y_min, x_max, y_max = scale_proportion(obj_box, H=H, W=W)
                mask[y_min:y_max, x_min:x_max] = 1

            for obj_position in phrase_indices[obj_idx]:
                # Could potentially optimize to compute this for loop in batch.
                # Could crop the ref cross attention before saving to save memory.

                ca_map_obj = attn_map[:, :, obj_position].reshape(b, H, W)

                # shape: (b, H * W)
                ca_map_obj = attn_map[:, :, obj_position]  # .reshape(b, H, W)
                k_fg = (mask.sum() * fg_top_p).long().clamp_(min=1)
                k_bg = ((1 - mask).sum() * bg_top_p).long().clamp_(min=1)

                mask_1d = mask.view(1, -1)

                # Max-based loss function

                # Take the topk over spatial dimension, and then take the sum over heads dim
                # The mean is over k_fg and k_bg dimension, so we don't need to sum and divide on our own.
                obj_loss += (1 - (ca_map_obj * mask_1d).topk(k=k_fg).values.mean(dim=1)).sum(dim=0) * fg_weight
                obj_loss += ((ca_map_obj * (1 - mask_1d)).topk(k=k_bg).values.mean(dim=1)).sum(dim=0) * bg_weight

            loss += obj_loss / len(phrase_indices[obj_idx])

        return loss

    def compute_ca_loss(self, saved_attn, bboxes, phrase_indices, guidance_attn_keys, verbose=False, **kwargs):
        """
        The `saved_attn` is supposed to be passed to `save_attn_to_dict` in `cross_attention_kwargs` prior to computing ths loss.
        `AttnProcessor` will put attention maps into the `save_attn_to_dict`.

        `index` is the timestep.
        `ref_ca_word_token_only`: This has precedence over `ref_ca_last_token_only` (i.e., if both are enabled, we take the token from word rather than the last token).
        `ref_ca_last_token_only`: `ref_ca_saved_attn` comes from the attention map of the last token of the phrase in single object generation, so we apply it only to the last token of the phrase in overall generation if this is set to True. If set to False, `ref_ca_saved_attn` will be applied to all the text tokens.
        """
        loss = torch.tensor(0).float().cuda()
        object_number = len(bboxes)
        if object_number == 0:
            return loss

        for attn_key in guidance_attn_keys:
            # We only have 1 cross attention for mid.

            attn_map_integrated = saved_attn[attn_key]
            if not attn_map_integrated.is_cuda:
                attn_map_integrated = attn_map_integrated.cuda()
            # Example dimension: [20, 64, 77]
            attn_map = attn_map_integrated.squeeze(dim=0)

            loss = self.add_ca_loss_per_attn_map_to_loss(
                loss, attn_map, object_number, bboxes, phrase_indices, **kwargs
            )

        num_attn = len(guidance_attn_keys)

        if num_attn > 0:
            loss = loss / (object_number * num_attn)

        return loss

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        gligen_scheduled_sampling_beta: float = 0.3,
        phrases: List[str] = None,
        boxes: List[List[float]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        lmd_guidance_kwargs: Optional[Dict[str, Any]] = {},
        phrase_indices: Optional[List[int]] = None,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            phrases (`List[str]`):
                The phrases to guide what to include in each of the regions defined by the corresponding
                `boxes`. There should only be one phrase per bounding box.
            boxes (`List[List[float]]`):
                The bounding boxes that identify rectangular regions of the image that are going to be filled with the
                content described by the corresponding `phrases`. Each rectangular box is defined as a
                `List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1].
            gligen_scheduled_sampling_beta (`float`, defaults to 0.3):
                Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image
                Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for
                scheduled sampling during inference for improved quality and controllability.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            lmd_guidance_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to `latent_lmd_guidance` function. Useful keys include `loss_scale` (the guidance strength), `loss_threshold` (when loss is lower than this value, the guidance is not applied anymore), `max_iter` (the number of iterations of guidance for each step), and `guidance_timesteps` (the number of diffusion timesteps to apply guidance on). See `latent_lmd_guidance` for implementation details.
            phrase_indices (`list` of `list`, *optional*): The indices of the tokens of each phrase in the overall prompt. If omitted, the pipeline will match the first token subsequence. The pipeline will append the missing phrases to the end of the prompt by default.
        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            phrases,
            boxes,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            phrase_indices,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
            if phrase_indices is None:
                phrase_indices, prompt = self.get_phrase_indices(prompt, phrases, add_suffix_if_not_found=True)
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
            if phrase_indices is None:
                phrase_indices = []
                prompt_parsed = []
                for prompt_item in prompt:
                    phrase_indices_parsed_item, prompt_parsed_item = self.get_phrase_indices(
                        prompt_item, add_suffix_if_not_found=True
                    )
                    phrase_indices.append(phrase_indices_parsed_item)
                    prompt_parsed.append(prompt_parsed_item)
                prompt = prompt_parsed
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            clip_skip=clip_skip,
        )

        cond_prompt_embeds = prompt_embeds

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 5.1 Prepare GLIGEN variables
        max_objs = 30
        if len(boxes) > max_objs:
            warnings.warn(
                f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.",
                FutureWarning,
            )
            phrases = phrases[:max_objs]
            boxes = boxes[:max_objs]

        n_objs = len(boxes)
        if n_objs:
            # prepare batched input to the PositionNet (boxes, phrases, mask)
            # Get tokens for phrases from pre-trained CLIPTokenizer
            tokenizer_inputs = self.tokenizer(phrases, padding=True, return_tensors="pt").to(device)
            # For the token, we use the same pre-trained text encoder
            # to obtain its text feature
            _text_embeddings = self.text_encoder(**tokenizer_inputs).pooler_output

        # For each entity, described in phrases, is denoted with a bounding box,
        # we represent the location information as (xmin,ymin,xmax,ymax)
        cond_boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype)
        if n_objs:
            cond_boxes[:n_objs] = torch.tensor(boxes)
        text_embeddings = torch.zeros(
            max_objs, self.unet.config.cross_attention_dim, device=device, dtype=self.text_encoder.dtype
        )
        if n_objs:
            text_embeddings[:n_objs] = _text_embeddings
        # Generate a mask for each object that is entity described by phrases
        masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype)
        masks[:n_objs] = 1

        repeat_batch = batch_size * num_images_per_prompt
        cond_boxes = cond_boxes.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
        text_embeddings = text_embeddings.unsqueeze(0).expand(repeat_batch, -1, -1).clone()
        masks = masks.unsqueeze(0).expand(repeat_batch, -1).clone()
        if do_classifier_free_guidance:
            repeat_batch = repeat_batch * 2
            cond_boxes = torch.cat([cond_boxes] * 2)
            text_embeddings = torch.cat([text_embeddings] * 2)
            masks = torch.cat([masks] * 2)
            masks[: repeat_batch // 2] = 0
        if cross_attention_kwargs is None:
            cross_attention_kwargs = {}
        cross_attention_kwargs["gligen"] = {
            "boxes": cond_boxes,
            "positive_embeddings": text_embeddings,
            "masks": masks,
        }

        num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
        self.enable_fuser(True)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        loss_attn = torch.tensor(10000.0)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Scheduled sampling
                if i == num_grounding_steps:
                    self.enable_fuser(False)

                if latents.shape[1] != 4:
                    latents = torch.randn_like(latents[:, :4])

                # 7.1 Perform LMD guidance
                if boxes:
                    latents, loss_attn = self.latent_lmd_guidance(
                        cond_prompt_embeds,
                        index=i,
                        boxes=boxes,
                        phrase_indices=phrase_indices,
                        t=t,
                        latents=latents,
                        loss=loss_attn,
                        **lmd_guidance_kwargs,
                    )

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    @torch.set_grad_enabled(True)
    def latent_lmd_guidance(
        self,
        cond_embeddings,
        index,
        boxes,
        phrase_indices,
        t,
        latents,
        loss,
        *,
        loss_scale=20,
        loss_threshold=5.0,
        max_iter=[3] * 5 + [2] * 5 + [1] * 5,
        guidance_timesteps=15,
        cross_attention_kwargs=None,
        guidance_attn_keys=DEFAULT_GUIDANCE_ATTN_KEYS,
        verbose=False,
        clear_cache=False,
        unet_additional_kwargs={},
        guidance_callback=None,
        **kwargs,
    ):
        scheduler, unet = self.scheduler, self.unet

        iteration = 0

        if index < guidance_timesteps:
            if isinstance(max_iter, list):
                max_iter = max_iter[index]

            if verbose:
                logger.info(
                    f"time index {index}, loss: {loss.item()/loss_scale:.3f} (de-scaled with scale {loss_scale:.1f}), loss threshold: {loss_threshold:.3f}"
                )

            try:
                self.enable_attn_hook(enabled=True)

                while (
                    loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < guidance_timesteps
                ):
                    self._saved_attn = {}

                    latents.requires_grad_(True)
                    latent_model_input = latents
                    latent_model_input = scheduler.scale_model_input(latent_model_input, t)

                    unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=cond_embeddings,
                        cross_attention_kwargs=cross_attention_kwargs,
                        **unet_additional_kwargs,
                    )

                    # update latents with guidance
                    loss = (
                        self.compute_ca_loss(
                            saved_attn=self._saved_attn,
                            bboxes=boxes,
                            phrase_indices=phrase_indices,
                            guidance_attn_keys=guidance_attn_keys,
                            verbose=verbose,
                            **kwargs,
                        )
                        * loss_scale
                    )

                    if torch.isnan(loss):
                        raise RuntimeError("**Loss is NaN**")

                    # This callback allows visualizations.
                    if guidance_callback is not None:
                        guidance_callback(self, latents, loss, iteration, index)

                    self._saved_attn = None

                    grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]

                    latents.requires_grad_(False)

                    # Scaling with classifier guidance
                    alpha_prod_t = scheduler.alphas_cumprod[t]
                    # Classifier guidance: https://arxiv.org/pdf/2105.05233.pdf
                    # DDIM: https://arxiv.org/pdf/2010.02502.pdf
                    scale = (1 - alpha_prod_t) ** (0.5)
                    latents = latents - scale * grad_cond

                    iteration += 1

                    if clear_cache:
                        gc.collect()
                        torch.cuda.empty_cache()

                    if verbose:
                        logger.info(
                            f"time index {index}, loss: {loss.item()/loss_scale:.3f}, loss threshold: {loss_threshold:.3f}, iteration: {iteration}"
                        )

            finally:
                self.enable_attn_hook(enabled=False)

        return latents, loss