Datasets:

ArXiv:
File size: 44,818 Bytes
4ba2b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
import math
import numbers
from typing import Any, Callable, Dict, List, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.image_processor import PipelineImageInput
from diffusers.models import AsymmetricAutoencoderKL, ImageProjection
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import (
    StableDiffusionInpaintPipeline,
    retrieve_timesteps,
)
from diffusers.utils import deprecate


class RASGAttnProcessor:
    def __init__(self, mask, token_idx, scale_factor):
        self.attention_scores = None  # Stores the last output of the similarity matrix here. Each layer will get its own RASGAttnProcessor assigned
        self.mask = mask
        self.token_idx = token_idx
        self.scale_factor = scale_factor
        self.mask_resoltuion = mask.shape[-1] * mask.shape[-2]  # 64 x 64 if the image is 512x512

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
        # Same as the default AttnProcessor up untill the part where similarity matrix gets saved
        downscale_factor = self.mask_resoltuion // hidden_states.shape[1]
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        # Automatically recognize the resolution and save the attention similarity values
        # We need to use the values before the softmax function, hence the rewritten get_attention_scores function.
        if downscale_factor == self.scale_factor**2:
            self.attention_scores = get_attention_scores(attn, query, key, attention_mask)
            attention_probs = self.attention_scores.softmax(dim=-1)
            attention_probs = attention_probs.to(query.dtype)
        else:
            attention_probs = attn.get_attention_scores(query, key, attention_mask)  # Original code

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class PAIntAAttnProcessor:
    def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors):
        self.transformer_block = transformer_block  # Stores the parent transformer block.
        self.mask = mask
        self.scale_factors = scale_factors
        self.do_classifier_free_guidance = do_classifier_free_guidance
        self.token_idx = token_idx
        self.shape = mask.shape[2:]
        self.mask_resoltuion = mask.shape[-1] * mask.shape[-2]  # 64 x 64
        self.default_processor = AttnProcessor()

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        scale: float = 1.0,
    ) -> torch.Tensor:
        # Automatically recognize the resolution of the current attention layer and resize the masks accordingly
        downscale_factor = self.mask_resoltuion // hidden_states.shape[1]

        mask = None
        for factor in self.scale_factors:
            if downscale_factor == factor**2:
                shape = (self.shape[0] // factor, self.shape[1] // factor)
                mask = F.interpolate(self.mask, shape, mode="bicubic")  # B, 1, H, W
                break
        if mask is None:
            return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale)

        # STARTS HERE
        residual = hidden_states
        # Save the input hidden_states for later use
        input_hidden_states = hidden_states

        # ================================================== #
        # =============== SELF ATTENTION 1 ================= #
        # ================================================== #

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        # self_attention_probs = attn.get_attention_scores(query, key, attention_mask) # We can't use post-softmax attention scores in this case
        self_attention_scores = get_attention_scores(
            attn, query, key, attention_mask
        )  # The custom function returns pre-softmax probabilities
        self_attention_probs = self_attention_scores.softmax(
            dim=-1
        )  # Manually compute the probabilities here, the scores will be reused in the second part of PAIntA
        self_attention_probs = self_attention_probs.to(query.dtype)

        hidden_states = torch.bmm(self_attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        # x = x + self.attn1(self.norm1(x))

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:  # So many residuals everywhere
            hidden_states = hidden_states + residual

        self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor

        # ================================================== #
        # ============ BasicTransformerBlock =============== #
        # ================================================== #
        # We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here
        # The other option would've been modifying the BasicTransformerBlock and adding this functionality here.
        # I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead.

        # The SelfAttention block recieves the normalized latents from the BasicTransformerBlock,
        # But the residual of the output is the non-normalized version.
        # Therefore we unnormalize the input hidden state here
        unnormalized_input_hidden_states = (
            input_hidden_states + self.transformer_block.norm1.bias
        ) * self.transformer_block.norm1.weight

        # TODO: return if neccessary
        # if self.use_ada_layer_norm_zero:
        #     attn_output = gate_msa.unsqueeze(1) * attn_output
        # elif self.use_ada_layer_norm_single:
        #     attn_output = gate_msa * attn_output

        transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states
        if transformer_hidden_states.ndim == 4:
            transformer_hidden_states = transformer_hidden_states.squeeze(1)

        # TODO: return if neccessary
        # 2.5 GLIGEN Control
        # if gligen_kwargs is not None:
        #     transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"])
        # NOTE: we experimented with using GLIGEN and HDPainter together, the results were not that great

        # 3. Cross-Attention
        if self.transformer_block.use_ada_layer_norm:
            # transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, timestep)
            raise NotImplementedError()
        elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm:
            transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states)
        elif self.transformer_block.use_ada_layer_norm_single:
            # For PixArt norm2 isn't applied here:
            # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
            transformer_norm_hidden_states = transformer_hidden_states
        elif self.transformer_block.use_ada_layer_norm_continuous:
            # transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, added_cond_kwargs["pooled_text_emb"])
            raise NotImplementedError()
        else:
            raise ValueError("Incorrect norm")

        if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False:
            transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states)

        # ================================================== #
        # ================= CROSS ATTENTION ================ #
        # ================================================== #

        # We do an initial pass of the CrossAttention up to obtaining the similarity matrix here.
        # The similarity matrix is used to obtain scaling coefficients for the attention matrix of the self attention
        # We reuse the previously computed self-attention matrix, and only repeat the steps after the softmax

        cross_attention_input_hidden_states = (
            transformer_norm_hidden_states  # Renaming the variable for the sake of readability
        )

        # TODO: check if classifier_free_guidance is being used before splitting here
        if self.do_classifier_free_guidance:
            # Our scaling coefficients depend only on the conditional part, so we split the inputs
            (
                _cross_attention_input_hidden_states_unconditional,
                cross_attention_input_hidden_states_conditional,
            ) = cross_attention_input_hidden_states.chunk(2)

            # Same split for the encoder_hidden_states i.e. the tokens
            # Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining.
            _encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(
                2
            )
        else:
            cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states
            encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2)

        # Rename the variables for the sake of readability
        # The part below is the beginning of the __call__ function of the following CrossAttention layer
        cross_attention_hidden_states = cross_attention_input_hidden_states_conditional
        cross_attention_encoder_hidden_states = encoder_hidden_states_conditional

        attn2 = self.transformer_block.attn2

        if attn2.spatial_norm is not None:
            cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb)

        input_ndim = cross_attention_hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = cross_attention_hidden_states.shape
            cross_attention_hidden_states = cross_attention_hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        (
            batch_size,
            sequence_length,
            _,
        ) = cross_attention_hidden_states.shape  # It is definitely a cross attention, so no need for an if block
        # TODO: change the attention_mask here
        attention_mask = attn2.prepare_attention_mask(
            None, sequence_length, batch_size
        )  # I assume the attention mask is the same...

        if attn2.group_norm is not None:
            cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query2 = attn2.to_q(cross_attention_hidden_states)

        if attn2.norm_cross:
            cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states(
                cross_attention_encoder_hidden_states
            )

        key2 = attn2.to_k(cross_attention_encoder_hidden_states)
        query2 = attn2.head_to_batch_dim(query2)
        key2 = attn2.head_to_batch_dim(key2)

        cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask)

        # CrossAttention ends here, the remaining part is not used

        # ================================================== #
        # ================ SELF ATTENTION 2 ================ #
        # ================================================== #
        # DEJA VU!

        mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype)
        m = mask.to(self_attention_output_hidden_states.device)
        # m = rearrange(m, 'b c h w -> b (h w) c').contiguous()
        m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous()  # B HW 1
        m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m)

        # # Compute scaling coefficients for the similarity matrix
        # # Select the cross attention values for the correct tokens only!
        # cross_attention_probs = cross_attention_probs.mean(dim = 0)
        # cross_attention_probs = cross_attention_probs[:, self.token_idx].sum(dim=1)

        # cross_attention_probs = cross_attention_probs.reshape(shape)
        # gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(self_attention_output_hidden_states.device)
        # cross_attention_probs = gaussian_smoothing(cross_attention_probs.unsqueeze(0))[0] # optional smoothing
        # cross_attention_probs = cross_attention_probs.reshape(-1)
        # cross_attention_probs = ((cross_attention_probs - torch.median(cross_attention_probs.ravel())) / torch.max(cross_attention_probs.ravel())).clip(0, 1)

        # c = (1 - m) * cross_attention_probs.reshape(1, 1, -1) + m # PAIntA scaling coefficients

        # Compute scaling coefficients for the similarity matrix
        # Select the cross attention values for the correct tokens only!

        batch_size, dims, channels = cross_attention_probs.shape
        batch_size = batch_size // attn.heads
        cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels))  # B, D, HW, T

        cross_attention_probs = cross_attention_probs.mean(dim=1)  # B, HW, T
        cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1)  # B, HW
        cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape)  # , B, H, W

        gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(
            self_attention_output_hidden_states.device
        )
        cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0]  # optional smoothing B, H, W

        # Median normalization
        cross_attention_probs = cross_attention_probs.reshape(batch_size, -1)  # B, HW
        cross_attention_probs = (
            cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values
        ) / cross_attention_probs.max(dim=-1, keepdim=True).values
        cross_attention_probs = cross_attention_probs.clip(0, 1)

        c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m
        c = c.repeat_interleave(attn.heads, 0)  # BD, HW
        if self.do_classifier_free_guidance:
            c = torch.cat([c, c])  # 2BD, HW

        # Rescaling the original self-attention matrix
        self_attention_scores_rescaled = self_attention_scores * c
        self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1)

        # Continuing the self attention normally using the new matrix
        hidden_states = torch.bmm(self_attention_probs_rescaled, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + input_hidden_states

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
    def get_tokenized_prompt(self, prompt):
        out = self.tokenizer(prompt)
        return [self.tokenizer.decode(x) for x in out["input_ids"]]

    def init_attn_processors(
        self,
        mask,
        token_idx,
        use_painta=True,
        use_rasg=True,
        painta_scale_factors=[2, 4],  # 64x64 -> [16x16, 32x32]
        rasg_scale_factor=4,  # 64x64 -> 16x16
        self_attention_layer_name="attn1",
        cross_attention_layer_name="attn2",
        list_of_painta_layer_names=None,
        list_of_rasg_layer_names=None,
    ):
        default_processor = AttnProcessor()
        width, height = mask.shape[-2:]
        width, height = width // self.vae_scale_factor, height // self.vae_scale_factor

        painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors]
        rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor

        attn_processors = {}
        for x in self.unet.attn_processors:
            if (list_of_painta_layer_names is None and self_attention_layer_name in x) or (
                list_of_painta_layer_names is not None and x in list_of_painta_layer_names
            ):
                if use_painta:
                    transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", ""))
                    attn_processors[x] = PAIntAAttnProcessor(
                        transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors
                    )
                else:
                    attn_processors[x] = default_processor
            elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or (
                list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names
            ):
                if use_rasg:
                    attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor)
                else:
                    attn_processors[x] = default_processor

        self.unet.set_attn_processor(attn_processors)
        # import json
        # with open('/home/hayk.manukyan/repos/diffusers/debug.txt', 'a')  as f:
        #     json.dump({x:str(y) for x,y in self.unet.attn_processors.items()}, f, indent=4)

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        masked_image_latents: torch.Tensor = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        padding_mask_crop: Optional[int] = None,
        strength: float = 1.0,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        guidance_scale: float = 7.5,
        positive_prompt: Optional[str] = "",
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.01,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: int = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        use_painta=True,
        use_rasg=True,
        self_attention_layer_name=".attn1",
        cross_attention_layer_name=".attn2",
        painta_scale_factors=[2, 4],  # 16 x 16 and 32 x 32
        rasg_scale_factor=4,  # 16x16 by default
        list_of_painta_layer_names=None,
        list_of_rasg_layer_names=None,
        **kwargs,
    ):
        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
            )

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        #
        prompt_no_positives = prompt
        if isinstance(prompt, list):
            prompt = [x + positive_prompt for x in prompt]
        else:
            prompt = prompt + positive_prompt

        # 1. Check inputs
        self.check_inputs(
            prompt,
            image,
            mask_image,
            height,
            width,
            strength,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            callback_on_step_end_tensor_inputs,
            padding_mask_crop,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # assert batch_size == 1, "Does not work with batch size > 1 currently"

        device = self._execution_device

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None:
            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
            image_embeds, negative_image_embeds = self.encode_image(
                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
            )
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])

        # 4. set timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # check that number of inference steps is not < 1 - as this doesn't make sense
        if num_inference_steps < 1:
            raise ValueError(
                f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
                f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
            )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0

        # 5. Preprocess mask and image

        if padding_mask_crop is not None:
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
        init_image = init_image.to(dtype=torch.float32)

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4

        latents_outputs = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

        # 7. Prepare mask latent variables
        mask_condition = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )

        if masked_image_latents is None:
            masked_image = init_image * (mask_condition < 0.5)
        else:
            masked_image = masked_image_latents

        mask, masked_image_latents = self.prepare_mask_latents(
            mask_condition,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            self.do_classifier_free_guidance,
        )

        # 7.5 Setting up HD-Painter

        # Get the indices of the tokens to be modified by both RASG and PAIntA
        token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [
            self.get_tokenized_prompt(prompt).index("<|endoftext|>")
        ]

        # Setting up the attention processors
        self.init_attn_processors(
            mask_condition,
            token_idx,
            use_painta,
            use_rasg,
            painta_scale_factors=painta_scale_factors,
            rasg_scale_factor=rasg_scale_factor,
            self_attention_layer_name=self_attention_layer_name,
            cross_attention_layer_name=cross_attention_layer_name,
            list_of_painta_layer_names=list_of_painta_layer_names,
            list_of_rasg_layer_names=list_of_rasg_layer_names,
        )

        # 8. Check that sizes of mask, masked image and latents match
        if num_channels_unet == 9:
            # default case for runwayml/stable-diffusion-inpainting
            num_channels_mask = mask.shape[1]
            num_channels_masked_image = masked_image_latents.shape[1]
            if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
                raise ValueError(
                    f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
                    f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
                    f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
                    f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
                    " `pipeline.unet` or your `mask_image` or `image` input."
                )
        elif num_channels_unet != 4:
            raise ValueError(
                f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
            )

        # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        if use_rasg:
            extra_step_kwargs["generator"] = None

        # 9.1 Add image embeds for IP-Adapter
        added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None

        # 9.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 10. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        painta_active = True

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                if t < 500 and painta_active:
                    self.init_attn_processors(
                        mask_condition,
                        token_idx,
                        False,
                        use_rasg,
                        painta_scale_factors=painta_scale_factors,
                        rasg_scale_factor=rasg_scale_factor,
                        self_attention_layer_name=self_attention_layer_name,
                        cross_attention_layer_name=cross_attention_layer_name,
                        list_of_painta_layer_names=list_of_painta_layer_names,
                        list_of_rasg_layer_names=list_of_rasg_layer_names,
                    )
                    painta_active = False

                with torch.enable_grad():
                    self.unet.zero_grad()
                    latents = latents.detach()
                    latents.requires_grad = True

                    # expand the latents if we are doing classifier free guidance
                    latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents

                    # concat latents, mask, masked_image_latents in the channel dimension
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                    if num_channels_unet == 9:
                        latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

                    self.scheduler.latents = latents
                    self.encoder_hidden_states = prompt_embeds
                    for attn_processor in self.unet.attn_processors.values():
                        attn_processor.encoder_hidden_states = prompt_embeds

                    # predict the noise residual
                    noise_pred = self.unet(
                        latent_model_input,
                        t,
                        encoder_hidden_states=prompt_embeds,
                        timestep_cond=timestep_cond,
                        cross_attention_kwargs=self.cross_attention_kwargs,
                        added_cond_kwargs=added_cond_kwargs,
                        return_dict=False,
                    )[0]

                    # perform guidance
                    if self.do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                        noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                    if use_rasg:
                        # Perform RASG
                        _, _, height, width = mask_condition.shape  # 512 x 512
                        scale_factor = self.vae_scale_factor * rasg_scale_factor  # 8 * 4 = 32

                        # TODO: Fix for > 1 batch_size
                        rasg_mask = F.interpolate(
                            mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic"
                        )[0, 0]  # mode is nearest by default, B, H, W

                        # Aggregate the saved attention maps
                        attn_map = []
                        for processor in self.unet.attn_processors.values():
                            if hasattr(processor, "attention_scores") and processor.attention_scores is not None:
                                if self.do_classifier_free_guidance:
                                    attn_map.append(processor.attention_scores.chunk(2)[1])  # (B/2) x H, 256, 77
                                else:
                                    attn_map.append(processor.attention_scores)  # B x H, 256, 77 ?

                        attn_map = (
                            torch.cat(attn_map)
                            .mean(0)
                            .permute(1, 0)
                            .reshape((-1, height // scale_factor, width // scale_factor))
                        )  # 77, 16, 16

                        # Compute the attention score
                        attn_score = -sum(
                            [
                                F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device))
                                for x in attn_map[token_idx]
                            ]
                        )

                        # Backward the score and compute the gradients
                        attn_score.backward()

                        # Normalzie the gradients and compute the noise component
                        variance_noise = latents.grad.detach()
                        # print("VARIANCE SHAPE", variance_noise.shape)
                        variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True)
                        variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True)
                    else:
                        variance_noise = None

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise
                )[0]

                if num_channels_unet == 4:
                    init_latents_proper = image_latents
                    if self.do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    mask = callback_outputs.pop("mask", mask)
                    masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            condition_kwargs = {}
            if isinstance(self.vae, AsymmetricAutoencoderKL):
                init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
                init_image_condition = init_image.clone()
                init_image = self._encode_vae_image(init_image, generator=generator)
                mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
                condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
            image = self.vae.decode(
                latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
            )[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)


# ============= Utility Functions ============== #


class GaussianSmoothing(nn.Module):
    """
    Apply gaussian smoothing on a
    1d, 2d or 3d tensor. Filtering is performed seperately for each channel
    in the input using a depthwise convolution.
    Arguments:
        channels (int, sequence): Number of channels of the input tensors. Output will
            have this number of channels as well.
        kernel_size (int, sequence): Size of the gaussian kernel.
        sigma (float, sequence): Standard deviation of the gaussian kernel.
        dim (int, optional): The number of dimensions of the data.
            Default value is 2 (spatial).
    """

    def __init__(self, channels, kernel_size, sigma, dim=2):
        super(GaussianSmoothing, self).__init__()
        if isinstance(kernel_size, numbers.Number):
            kernel_size = [kernel_size] * dim
        if isinstance(sigma, numbers.Number):
            sigma = [sigma] * dim

        # The gaussian kernel is the product of the
        # gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)

        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))

        self.register_buffer("weight", kernel)
        self.groups = channels

        if dim == 1:
            self.conv = F.conv1d
        elif dim == 2:
            self.conv = F.conv2d
        elif dim == 3:
            self.conv = F.conv3d
        else:
            raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim))

    def forward(self, input):
        """
        Apply gaussian filter to input.
        Arguments:
            input (torch.Tensor): Input to apply gaussian filter on.
        Returns:
            filtered (torch.Tensor): Filtered output.
        """
        return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same")


def get_attention_scores(
    self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
) -> torch.Tensor:
    r"""
    Compute the attention scores.

    Args:
        query (`torch.Tensor`): The query tensor.
        key (`torch.Tensor`): The key tensor.
        attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

    Returns:
        `torch.Tensor`: The attention probabilities/scores.
    """
    if self.upcast_attention:
        query = query.float()
        key = key.float()

    if attention_mask is None:
        baddbmm_input = torch.empty(
            query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
        )
        beta = 0
    else:
        baddbmm_input = attention_mask
        beta = 1

    attention_scores = torch.baddbmm(
        baddbmm_input,
        query,
        key.transpose(-1, -2),
        beta=beta,
        alpha=self.scale,
    )
    del baddbmm_input

    if self.upcast_softmax:
        attention_scores = attention_scores.float()

    return attention_scores