Datasets:

ArXiv:
File size: 24,442 Bytes
e87eafc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import math
import tempfile
from typing import List, Optional

import numpy as np
import PIL.Image
import torch
from accelerate import Accelerator
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
from diffusers.models.attention_processor import (
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    LoRAAttnAddedKVProcessor,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    SlicedAttnAddedKVProcessor,
)
from diffusers.optimization import get_scheduler


class SdeDragPipeline(DiffusionPipeline):
    r"""
    Pipeline for image drag-and-drop editing using stochastic differential equations: https://arxiv.org/abs/2311.01410.
    Please refer to the [official repository](https://github.com/ML-GSAI/SDE-Drag) for more information.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Please use
            [`DDIMScheduler`].
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: DPMSolverMultistepScheduler,
    ):
        super().__init__()

        self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        prompt: str,
        image: PIL.Image.Image,
        mask_image: PIL.Image.Image,
        source_points: List[List[int]],
        target_points: List[List[int]],
        t0: Optional[float] = 0.6,
        steps: Optional[int] = 200,
        step_size: Optional[int] = 2,
        image_scale: Optional[float] = 0.3,
        adapt_radius: Optional[int] = 5,
        min_lora_scale: Optional[float] = 0.5,
        generator: Optional[torch.Generator] = None,
    ):
        r"""
        Function invoked when calling the pipeline for image editing.
        Args:
            prompt (`str`, *required*):
                The prompt to guide the image editing.
            image (`PIL.Image.Image`, *required*):
                Which will be edited, parts of the image will be masked out with `mask_image` and edited
                according to `prompt`.
            mask_image (`PIL.Image.Image`, *required*):
                To mask `image`. White pixels in the mask will be edited, while black pixels will be preserved.
            source_points (`List[List[int]]`, *required*):
                Used to mark the starting positions of drag editing in the image, with each pixel represented as a
                `List[int]` of length 2.
            target_points (`List[List[int]]`, *required*):
                Used to mark the target positions of drag editing in the image, with each pixel represented as a
                `List[int]` of length 2.
            t0 (`float`, *optional*, defaults to 0.6):
                The time parameter. Higher t0 improves the fidelity while lowering the faithfulness of the edited images
                and vice versa.
            steps (`int`, *optional*, defaults to 200):
                The number of sampling iterations.
            step_size (`int`, *optional*, defaults to 2):
                The drag diatance of each drag step.
            image_scale (`float`, *optional*, defaults to 0.3):
                To avoid duplicating the content, use image_scale to perturbs the source.
            adapt_radius (`int`, *optional*, defaults to 5):
                The size of the region for copy and paste operations during each step of the drag process.
            min_lora_scale (`float`, *optional*, defaults to 0.5):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
                min_lora_scale specifies the minimum LoRA scale during the image drag-editing process.
            generator ('torch.Generator', *optional*, defaults to None):
                To make generation deterministic(https://pytorch.org/docs/stable/generated/torch.Generator.html).
        Examples:
        ```py
        >>> import PIL
        >>> import torch
        >>> from diffusers import DDIMScheduler, DiffusionPipeline

        >>> # Load the pipeline
        >>> model_path = "runwayml/stable-diffusion-v1-5"
        >>> scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
        >>> pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")
        >>> pipe.to('cuda')

        >>> # To save GPU memory, torch.float16 can be used, but it may compromise image quality.
        >>> # If not training LoRA, please avoid using torch.float16
        >>> # pipe.to(torch.float16)

        >>> # Provide prompt, image, mask image, and the starting and target points for drag editing.
        >>> prompt = "prompt of the image"
        >>> image = PIL.Image.open('/path/to/image')
        >>> mask_image = PIL.Image.open('/path/to/mask_image')
        >>> source_points = [[123, 456]]
        >>> target_points = [[234, 567]]

        >>> # train_lora is optional, and in most cases, using train_lora can better preserve consistency with the original image.
        >>> pipe.train_lora(prompt, image)

        >>> output = pipe(prompt, image, mask_image, source_points, target_points)
        >>> output_image = PIL.Image.fromarray(output)
        >>> output_image.save("./output.png")
        ```
        """

        self.scheduler.set_timesteps(steps)

        noise_scale = (1 - image_scale**2) ** (0.5)

        text_embeddings = self._get_text_embed(prompt)
        uncond_embeddings = self._get_text_embed([""])
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        latent = self._get_img_latent(image)

        mask = mask_image.resize((latent.shape[3], latent.shape[2]))
        mask = torch.tensor(np.array(mask))
        mask = mask.unsqueeze(0).expand_as(latent).to(self.device)

        source_points = torch.tensor(source_points).div(torch.tensor([8]), rounding_mode="trunc")
        target_points = torch.tensor(target_points).div(torch.tensor([8]), rounding_mode="trunc")

        distance = target_points - source_points
        distance_norm_max = torch.norm(distance.float(), dim=1, keepdim=True).max()

        if distance_norm_max <= step_size:
            drag_num = 1
        else:
            drag_num = distance_norm_max.div(torch.tensor([step_size]), rounding_mode="trunc")
            if (distance_norm_max / drag_num - step_size).abs() > (
                distance_norm_max / (drag_num + 1) - step_size
            ).abs():
                drag_num += 1

        latents = []
        for i in tqdm(range(int(drag_num)), desc="SDE Drag"):
            source_new = source_points + (i / drag_num * distance).to(torch.int)
            target_new = source_points + ((i + 1) / drag_num * distance).to(torch.int)

            latent, noises, hook_latents, lora_scales, cfg_scales = self._forward(
                latent, steps, t0, min_lora_scale, text_embeddings, generator
            )
            latent = self._copy_and_paste(
                latent,
                source_new,
                target_new,
                adapt_radius,
                latent.shape[2] - 1,
                latent.shape[3] - 1,
                image_scale,
                noise_scale,
                generator,
            )
            latent = self._backward(
                latent, mask, steps, t0, noises, hook_latents, lora_scales, cfg_scales, text_embeddings, generator
            )

            latents.append(latent)

        result_image = 1 / 0.18215 * latents[-1]

        with torch.no_grad():
            result_image = self.vae.decode(result_image).sample

        result_image = (result_image / 2 + 0.5).clamp(0, 1)
        result_image = result_image.cpu().permute(0, 2, 3, 1).numpy()[0]
        result_image = (result_image * 255).astype(np.uint8)

        return result_image

    def train_lora(self, prompt, image, lora_step=100, lora_rank=16, generator=None):
        accelerator = Accelerator(gradient_accumulation_steps=1, mixed_precision="fp16")

        self.vae.requires_grad_(False)
        self.text_encoder.requires_grad_(False)
        self.unet.requires_grad_(False)

        unet_lora_attn_procs = {}
        for name, attn_processor in self.unet.attn_processors.items():
            cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = self.unet.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.unet.config.block_out_channels[block_id]
            else:
                raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks")

            if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
                lora_attn_processor_class = LoRAAttnAddedKVProcessor
            else:
                lora_attn_processor_class = (
                    LoRAAttnProcessor2_0
                    if hasattr(torch.nn.functional, "scaled_dot_product_attention")
                    else LoRAAttnProcessor
                )
            unet_lora_attn_procs[name] = lora_attn_processor_class(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank
            )

        self.unet.set_attn_processor(unet_lora_attn_procs)
        unet_lora_layers = AttnProcsLayers(self.unet.attn_processors)
        params_to_optimize = unet_lora_layers.parameters()

        optimizer = torch.optim.AdamW(
            params_to_optimize,
            lr=2e-4,
            betas=(0.9, 0.999),
            weight_decay=1e-2,
            eps=1e-08,
        )

        lr_scheduler = get_scheduler(
            "constant",
            optimizer=optimizer,
            num_warmup_steps=0,
            num_training_steps=lora_step,
            num_cycles=1,
            power=1.0,
        )

        unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
        optimizer = accelerator.prepare_optimizer(optimizer)
        lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)

        with torch.no_grad():
            text_inputs = self._tokenize_prompt(prompt, tokenizer_max_length=None)
            text_embedding = self._encode_prompt(
                text_inputs.input_ids, text_inputs.attention_mask, text_encoder_use_attention_mask=False
            )

        image_transforms = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

        image = image_transforms(image).to(self.device, dtype=self.vae.dtype)
        image = image.unsqueeze(dim=0)
        latents_dist = self.vae.encode(image).latent_dist

        for _ in tqdm(range(lora_step), desc="Train LoRA"):
            self.unet.train()
            model_input = latents_dist.sample() * self.vae.config.scaling_factor

            # Sample noise that we'll add to the latents
            noise = torch.randn(
                model_input.size(),
                dtype=model_input.dtype,
                layout=model_input.layout,
                device=model_input.device,
                generator=generator,
            )
            bsz, channels, height, width = model_input.shape

            # Sample a random timestep for each image
            timesteps = torch.randint(
                0, self.scheduler.config.num_train_timesteps, (bsz,), device=model_input.device, generator=generator
            )
            timesteps = timesteps.long()

            # Add noise to the model input according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_model_input = self.scheduler.add_noise(model_input, noise, timesteps)

            # Predict the noise residual
            model_pred = self.unet(noisy_model_input, timesteps, text_embedding).sample

            # Get the target for loss depending on the prediction type
            if self.scheduler.config.prediction_type == "epsilon":
                target = noise
            elif self.scheduler.config.prediction_type == "v_prediction":
                target = self.scheduler.get_velocity(model_input, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {self.scheduler.config.prediction_type}")

            loss = torch.nn.functional.mse_loss(model_pred.float(), target.float(), reduction="mean")
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()

        with tempfile.TemporaryDirectory() as save_lora_dir:
            LoraLoaderMixin.save_lora_weights(
                save_directory=save_lora_dir,
                unet_lora_layers=unet_lora_layers,
                text_encoder_lora_layers=None,
            )

            self.unet.load_attn_procs(save_lora_dir)

    def _tokenize_prompt(self, prompt, tokenizer_max_length=None):
        if tokenizer_max_length is not None:
            max_length = tokenizer_max_length
        else:
            max_length = self.tokenizer.model_max_length

        text_inputs = self.tokenizer(
            prompt,
            truncation=True,
            padding="max_length",
            max_length=max_length,
            return_tensors="pt",
        )

        return text_inputs

    def _encode_prompt(self, input_ids, attention_mask, text_encoder_use_attention_mask=False):
        text_input_ids = input_ids.to(self.device)

        if text_encoder_use_attention_mask:
            attention_mask = attention_mask.to(self.device)
        else:
            attention_mask = None

        prompt_embeds = self.text_encoder(
            text_input_ids,
            attention_mask=attention_mask,
        )
        prompt_embeds = prompt_embeds[0]

        return prompt_embeds

    @torch.no_grad()
    def _get_text_embed(self, prompt):
        text_input = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
        return text_embeddings

    def _copy_and_paste(
        self, latent, source_new, target_new, adapt_radius, max_height, max_width, image_scale, noise_scale, generator
    ):
        def adaption_r(source, target, adapt_radius, max_height, max_width):
            r_x_lower = min(adapt_radius, source[0], target[0])
            r_x_upper = min(adapt_radius, max_width - source[0], max_width - target[0])
            r_y_lower = min(adapt_radius, source[1], target[1])
            r_y_upper = min(adapt_radius, max_height - source[1], max_height - target[1])
            return r_x_lower, r_x_upper, r_y_lower, r_y_upper

        for source_, target_ in zip(source_new, target_new):
            r_x_lower, r_x_upper, r_y_lower, r_y_upper = adaption_r(
                source_, target_, adapt_radius, max_height, max_width
            )

            source_feature = latent[
                :, :, source_[1] - r_y_lower : source_[1] + r_y_upper, source_[0] - r_x_lower : source_[0] + r_x_upper
            ].clone()

            latent[
                :, :, source_[1] - r_y_lower : source_[1] + r_y_upper, source_[0] - r_x_lower : source_[0] + r_x_upper
            ] = image_scale * source_feature + noise_scale * torch.randn(
                latent.shape[0],
                4,
                r_y_lower + r_y_upper,
                r_x_lower + r_x_upper,
                device=self.device,
                generator=generator,
            )

            latent[
                :, :, target_[1] - r_y_lower : target_[1] + r_y_upper, target_[0] - r_x_lower : target_[0] + r_x_upper
            ] = source_feature * 1.1
        return latent

    @torch.no_grad()
    def _get_img_latent(self, image, height=None, weight=None):
        data = image.convert("RGB")
        if height is not None:
            data = data.resize((weight, height))
        transform = transforms.ToTensor()
        data = transform(data).unsqueeze(0)
        data = (data * 2.0) - 1.0
        data = data.to(self.device, dtype=self.vae.dtype)
        latent = self.vae.encode(data).latent_dist.sample()
        latent = 0.18215 * latent
        return latent

    @torch.no_grad()
    def _get_eps(self, latent, timestep, guidance_scale, text_embeddings, lora_scale=None):
        latent_model_input = torch.cat([latent] * 2) if guidance_scale > 1.0 else latent
        text_embeddings = text_embeddings if guidance_scale > 1.0 else text_embeddings.chunk(2)[1]

        cross_attention_kwargs = None if lora_scale is None else {"scale": lora_scale}

        with torch.no_grad():
            noise_pred = self.unet(
                latent_model_input,
                timestep,
                encoder_hidden_states=text_embeddings,
                cross_attention_kwargs=cross_attention_kwargs,
            ).sample

        if guidance_scale > 1.0:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        elif guidance_scale == 1.0:
            noise_pred_text = noise_pred
            noise_pred_uncond = 0.0
        else:
            raise NotImplementedError(guidance_scale)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        return noise_pred

    def _forward_sde(
        self, timestep, sample, guidance_scale, text_embeddings, steps, eta=1.0, lora_scale=None, generator=None
    ):
        num_train_timesteps = len(self.scheduler)
        alphas_cumprod = self.scheduler.alphas_cumprod
        initial_alpha_cumprod = torch.tensor(1.0)

        prev_timestep = timestep + num_train_timesteps // steps

        alpha_prod_t = alphas_cumprod[timestep] if timestep >= 0 else initial_alpha_cumprod
        alpha_prod_t_prev = alphas_cumprod[prev_timestep]

        beta_prod_t_prev = 1 - alpha_prod_t_prev

        x_prev = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) * sample + (1 - alpha_prod_t_prev / alpha_prod_t) ** (
            0.5
        ) * torch.randn(
            sample.size(), dtype=sample.dtype, layout=sample.layout, device=self.device, generator=generator
        )
        eps = self._get_eps(x_prev, prev_timestep, guidance_scale, text_embeddings, lora_scale)

        sigma_t_prev = (
            eta
            * (1 - alpha_prod_t) ** (0.5)
            * (1 - alpha_prod_t_prev / (1 - alpha_prod_t_prev) * (1 - alpha_prod_t) / alpha_prod_t) ** (0.5)
        )

        pred_original_sample = (x_prev - beta_prod_t_prev ** (0.5) * eps) / alpha_prod_t_prev ** (0.5)
        pred_sample_direction_coeff = (1 - alpha_prod_t - sigma_t_prev**2) ** (0.5)

        noise = (
            sample - alpha_prod_t ** (0.5) * pred_original_sample - pred_sample_direction_coeff * eps
        ) / sigma_t_prev

        return x_prev, noise

    def _sample(
        self,
        timestep,
        sample,
        guidance_scale,
        text_embeddings,
        steps,
        sde=False,
        noise=None,
        eta=1.0,
        lora_scale=None,
        generator=None,
    ):
        num_train_timesteps = len(self.scheduler)
        alphas_cumprod = self.scheduler.alphas_cumprod
        final_alpha_cumprod = torch.tensor(1.0)

        eps = self._get_eps(sample, timestep, guidance_scale, text_embeddings, lora_scale)

        prev_timestep = timestep - num_train_timesteps // steps

        alpha_prod_t = alphas_cumprod[timestep]
        alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alpha_cumprod

        beta_prod_t = 1 - alpha_prod_t

        sigma_t = (
            eta
            * ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** (0.5)
            * (1 - alpha_prod_t / alpha_prod_t_prev) ** (0.5)
            if sde
            else 0
        )

        pred_original_sample = (sample - beta_prod_t ** (0.5) * eps) / alpha_prod_t ** (0.5)
        pred_sample_direction_coeff = (1 - alpha_prod_t_prev - sigma_t**2) ** (0.5)

        noise = (
            torch.randn(
                sample.size(), dtype=sample.dtype, layout=sample.layout, device=self.device, generator=generator
            )
            if noise is None
            else noise
        )
        latent = (
            alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction_coeff * eps + sigma_t * noise
        )

        return latent

    def _forward(self, latent, steps, t0, lora_scale_min, text_embeddings, generator):
        def scale_schedule(begin, end, n, length, type="linear"):
            if type == "constant":
                return end
            elif type == "linear":
                return begin + (end - begin) * n / length
            elif type == "cos":
                factor = (1 - math.cos(n * math.pi / length)) / 2
                return (1 - factor) * begin + factor * end
            else:
                raise NotImplementedError(type)

        noises = []
        latents = []
        lora_scales = []
        cfg_scales = []
        latents.append(latent)
        t0 = int(t0 * steps)
        t_begin = steps - t0

        length = len(self.scheduler.timesteps[t_begin - 1 : -1]) - 1
        index = 1
        for t in self.scheduler.timesteps[t_begin:].flip(dims=[0]):
            lora_scale = scale_schedule(1, lora_scale_min, index, length, type="cos")
            cfg_scale = scale_schedule(1, 3.0, index, length, type="linear")
            latent, noise = self._forward_sde(
                t, latent, cfg_scale, text_embeddings, steps, lora_scale=lora_scale, generator=generator
            )

            noises.append(noise)
            latents.append(latent)
            lora_scales.append(lora_scale)
            cfg_scales.append(cfg_scale)
            index += 1
        return latent, noises, latents, lora_scales, cfg_scales

    def _backward(
        self, latent, mask, steps, t0, noises, hook_latents, lora_scales, cfg_scales, text_embeddings, generator
    ):
        t0 = int(t0 * steps)
        t_begin = steps - t0

        hook_latent = hook_latents.pop()
        latent = torch.where(mask > 128, latent, hook_latent)
        for t in self.scheduler.timesteps[t_begin - 1 : -1]:
            latent = self._sample(
                t,
                latent,
                cfg_scales.pop(),
                text_embeddings,
                steps,
                sde=True,
                noise=noises.pop(),
                lora_scale=lora_scales.pop(),
                generator=generator,
            )
            hook_latent = hook_latents.pop()
            latent = torch.where(mask > 128, latent, hook_latent)
        return latent