Datasets:

ArXiv:
File size: 9,478 Bytes
81b7c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from typing import Optional

import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import (
    deprecate,
)


class EDICTPipeline(DiffusionPipeline):
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: DDIMScheduler,
        mixing_coeff: float = 0.93,
        leapfrog_steps: bool = True,
    ):
        self.mixing_coeff = mixing_coeff
        self.leapfrog_steps = leapfrog_steps

        super().__init__()
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    def _encode_prompt(
        self, prompt: str, negative_prompt: Optional[str] = None, do_classifier_free_guidance: bool = False
    ):
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )

        prompt_embeds = self.text_encoder(text_inputs.input_ids.to(self.device)).last_hidden_state

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=self.device)

        if do_classifier_free_guidance:
            uncond_tokens = "" if negative_prompt is None else negative_prompt

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device)).last_hidden_state

            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def denoise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
        x = self.mixing_coeff * x + (1 - self.mixing_coeff) * y
        y = self.mixing_coeff * y + (1 - self.mixing_coeff) * x

        return [x, y]

    def noise_mixing_layer(self, x: torch.Tensor, y: torch.Tensor):
        y = (y - (1 - self.mixing_coeff) * x) / self.mixing_coeff
        x = (x - (1 - self.mixing_coeff) * y) / self.mixing_coeff

        return [x, y]

    def _get_alpha_and_beta(self, t: torch.Tensor):
        # as self.alphas_cumprod is always in cpu
        t = int(t)

        alpha_prod = self.scheduler.alphas_cumprod[t] if t >= 0 else self.scheduler.final_alpha_cumprod

        return alpha_prod, 1 - alpha_prod

    def noise_step(
        self,
        base: torch.Tensor,
        model_input: torch.Tensor,
        model_output: torch.Tensor,
        timestep: torch.Tensor,
    ):
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps

        alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
        alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)

        a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
        b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5

        next_model_input = (base - b_t * model_output) / a_t

        return model_input, next_model_input.to(base.dtype)

    def denoise_step(
        self,
        base: torch.Tensor,
        model_input: torch.Tensor,
        model_output: torch.Tensor,
        timestep: torch.Tensor,
    ):
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps

        alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
        alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)

        a_t = (alpha_prod_t_prev / alpha_prod_t) ** 0.5
        b_t = -a_t * (beta_prod_t**0.5) + beta_prod_t_prev**0.5
        next_model_input = a_t * base + b_t * model_output

        return model_input, next_model_input.to(base.dtype)

    @torch.no_grad()
    def decode_latents(self, latents: torch.Tensor):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        return image

    @torch.no_grad()
    def prepare_latents(
        self,
        image: Image.Image,
        text_embeds: torch.Tensor,
        timesteps: torch.Tensor,
        guidance_scale: float,
        generator: Optional[torch.Generator] = None,
    ):
        do_classifier_free_guidance = guidance_scale > 1.0

        image = image.to(device=self.device, dtype=text_embeds.dtype)
        latent = self.vae.encode(image).latent_dist.sample(generator)

        latent = self.vae.config.scaling_factor * latent

        coupled_latents = [latent.clone(), latent.clone()]

        for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
            coupled_latents = self.noise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])

            # j - model_input index, k - base index
            for j in range(2):
                k = j ^ 1

                if self.leapfrog_steps:
                    if i % 2 == 0:
                        k, j = j, k

                model_input = coupled_latents[j]
                base = coupled_latents[k]

                latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input

                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeds).sample

                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                base, model_input = self.noise_step(
                    base=base,
                    model_input=model_input,
                    model_output=noise_pred,
                    timestep=t,
                )

                coupled_latents[k] = model_input

        return coupled_latents

    @torch.no_grad()
    def __call__(
        self,
        base_prompt: str,
        target_prompt: str,
        image: Image.Image,
        guidance_scale: float = 3.0,
        num_inference_steps: int = 50,
        strength: float = 0.8,
        negative_prompt: Optional[str] = None,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
    ):
        do_classifier_free_guidance = guidance_scale > 1.0

        image = self.image_processor.preprocess(image)

        base_embeds = self._encode_prompt(base_prompt, negative_prompt, do_classifier_free_guidance)
        target_embeds = self._encode_prompt(target_prompt, negative_prompt, do_classifier_free_guidance)

        self.scheduler.set_timesteps(num_inference_steps, self.device)

        t_limit = num_inference_steps - int(num_inference_steps * strength)
        fwd_timesteps = self.scheduler.timesteps[t_limit:]
        bwd_timesteps = fwd_timesteps.flip(0)

        coupled_latents = self.prepare_latents(image, base_embeds, bwd_timesteps, guidance_scale, generator)

        for i, t in tqdm(enumerate(fwd_timesteps), total=len(fwd_timesteps)):
            # j - model_input index, k - base index
            for k in range(2):
                j = k ^ 1

                if self.leapfrog_steps:
                    if i % 2 == 1:
                        k, j = j, k

                model_input = coupled_latents[j]
                base = coupled_latents[k]

                latent_model_input = torch.cat([model_input] * 2) if do_classifier_free_guidance else model_input

                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=target_embeds).sample

                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                base, model_input = self.denoise_step(
                    base=base,
                    model_input=model_input,
                    model_output=noise_pred,
                    timestep=t,
                )

                coupled_latents[k] = model_input

            coupled_latents = self.denoise_mixing_layer(x=coupled_latents[0], y=coupled_latents[1])

        # either one is fine
        final_latent = coupled_latents[0]

        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            image = final_latent
        else:
            image = self.decode_latents(final_latent)
            image = self.image_processor.postprocess(image, output_type=output_type)

        return image