Datasets:

ArXiv:
File size: 25,616 Bytes
ae21657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import inspect
from typing import List, Optional, Tuple, Union

import torch
from torch.nn import functional as F
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextModelOutput

from diffusers import (
    DiffusionPipeline,
    ImagePipelineOutput,
    PriorTransformer,
    UnCLIPScheduler,
    UNet2DConditionModel,
    UNet2DModel,
)
from diffusers.pipelines.unclip import UnCLIPTextProjModel
from diffusers.utils import is_accelerate_available, logging, randn_tensor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def slerp(val, low, high):
    """
    Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic.
    """
    low_norm = low / torch.norm(low)
    high_norm = high / torch.norm(high)
    omega = torch.acos((low_norm * high_norm))
    so = torch.sin(omega)
    res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high
    return res


class UnCLIPTextInterpolationPipeline(DiffusionPipeline):

    """
    Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        prior ([`PriorTransformer`]):
            The canonincal unCLIP prior to approximate the image embedding from the text embedding.
        text_proj ([`UnCLIPTextProjModel`]):
            Utility class to prepare and combine the embeddings before they are passed to the decoder.
        decoder ([`UNet2DConditionModel`]):
            The decoder to invert the image embedding into an image.
        super_res_first ([`UNet2DModel`]):
            Super resolution unet. Used in all but the last step of the super resolution diffusion process.
        super_res_last ([`UNet2DModel`]):
            Super resolution unet. Used in the last step of the super resolution diffusion process.
        prior_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the prior denoising process. Just a modified DDPMScheduler.
        decoder_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the decoder denoising process. Just a modified DDPMScheduler.
        super_res_scheduler ([`UnCLIPScheduler`]):
            Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler.

    """

    prior: PriorTransformer
    decoder: UNet2DConditionModel
    text_proj: UnCLIPTextProjModel
    text_encoder: CLIPTextModelWithProjection
    tokenizer: CLIPTokenizer
    super_res_first: UNet2DModel
    super_res_last: UNet2DModel

    prior_scheduler: UnCLIPScheduler
    decoder_scheduler: UnCLIPScheduler
    super_res_scheduler: UnCLIPScheduler

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.__init__
    def __init__(
        self,
        prior: PriorTransformer,
        decoder: UNet2DConditionModel,
        text_encoder: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        text_proj: UnCLIPTextProjModel,
        super_res_first: UNet2DModel,
        super_res_last: UNet2DModel,
        prior_scheduler: UnCLIPScheduler,
        decoder_scheduler: UnCLIPScheduler,
        super_res_scheduler: UnCLIPScheduler,
    ):
        super().__init__()

        self.register_modules(
            prior=prior,
            decoder=decoder,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_proj=text_proj,
            super_res_first=super_res_first,
            super_res_last=super_res_last,
            prior_scheduler=prior_scheduler,
            decoder_scheduler=decoder_scheduler,
            super_res_scheduler=super_res_scheduler,
        )

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
    ):
        if text_model_output is None:
            batch_size = len(prompt) if isinstance(prompt, list) else 1
            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            text_mask = text_inputs.attention_mask.bool().to(device)

            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]

            text_encoder_output = self.text_encoder(text_input_ids.to(device))

            prompt_embeds = text_encoder_output.text_embeds
            text_encoder_hidden_states = text_encoder_output.last_hidden_state

        else:
            batch_size = text_model_output[0].shape[0]
            prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1]
            text_mask = text_attention_mask

        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
            negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))

            negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
            uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_text_encoder_hidden_states.shape[1]
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
            uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return prompt_embeds, text_encoder_hidden_states, text_mask

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.enable_sequential_cpu_offload
    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
        models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
        when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        # TODO: self.prior.post_process_latents is not covered by the offload hooks, so it fails if added to the list
        models = [
            self.decoder,
            self.text_proj,
            self.text_encoder,
            self.super_res_first,
            self.super_res_last,
        ]
        for cpu_offloaded_model in models:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._execution_device
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"):
            return self.device
        for module in self.decoder.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    @torch.no_grad()
    def __call__(
        self,
        start_prompt: str,
        end_prompt: str,
        steps: int = 5,
        prior_num_inference_steps: int = 25,
        decoder_num_inference_steps: int = 25,
        super_res_num_inference_steps: int = 7,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        prior_guidance_scale: float = 4.0,
        decoder_guidance_scale: float = 8.0,
        enable_sequential_cpu_offload=True,
        gpu_id=0,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ):
        """
        Function invoked when calling the pipeline for generation.

        Args:
            start_prompt (`str`):
                The prompt to start the image generation interpolation from.
            end_prompt (`str`):
                The prompt to end the image generation interpolation at.
            steps (`int`, *optional*, defaults to 5):
                The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns
                the same number of images as this value.
            prior_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the prior. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            decoder_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality
                image at the expense of slower inference.
            super_res_num_inference_steps (`int`, *optional*, defaults to 7):
                The number of denoising steps for super resolution. More denoising steps usually lead to a higher
                quality image at the expense of slower inference.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            prior_guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            decoder_guidance_scale (`float`, *optional*, defaults to 4.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`):
                If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
                models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
                when their specific submodule has its `forward` method called.
            gpu_id (`int`, *optional*, defaults to `0`):
                The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
        """

        if not isinstance(start_prompt, str) or not isinstance(end_prompt, str):
            raise ValueError(
                f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and"
                f" {type(end_prompt)} instead"
            )

        if enable_sequential_cpu_offload:
            self.enable_sequential_cpu_offload(gpu_id=gpu_id)

        device = self._execution_device

        # Turn the prompts into embeddings.
        inputs = self.tokenizer(
            [start_prompt, end_prompt],
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
            return_tensors="pt",
        )
        inputs.to(device)
        text_model_output = self.text_encoder(**inputs)

        text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1])
        text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device)

        # Interpolate from the start to end prompt using slerp and add the generated images to an image output pipeline
        batch_text_embeds = []
        batch_last_hidden_state = []

        for interp_val in torch.linspace(0, 1, steps):
            text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1])
            last_hidden_state = slerp(
                interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1]
            )
            batch_text_embeds.append(text_embeds.unsqueeze(0))
            batch_last_hidden_state.append(last_hidden_state.unsqueeze(0))

        batch_text_embeds = torch.cat(batch_text_embeds)
        batch_last_hidden_state = torch.cat(batch_last_hidden_state)

        text_model_output = CLIPTextModelOutput(
            text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state
        )

        batch_size = text_model_output[0].shape[0]

        do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0

        prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
            prompt=None,
            device=device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=do_classifier_free_guidance,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
        )

        # prior

        self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
        prior_timesteps_tensor = self.prior_scheduler.timesteps

        embedding_dim = self.prior.config.embedding_dim

        prior_latents = self.prepare_latents(
            (batch_size, embedding_dim),
            prompt_embeds.dtype,
            device,
            generator,
            None,
            self.prior_scheduler,
        )

        for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
                proj_embedding=prompt_embeds,
                encoder_hidden_states=text_encoder_hidden_states,
                attention_mask=text_mask,
            ).predicted_image_embedding

            if do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            if i + 1 == prior_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = prior_timesteps_tensor[i + 1]

            prior_latents = self.prior_scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=prior_latents,
                generator=generator,
                prev_timestep=prev_timestep,
            ).prev_sample

        prior_latents = self.prior.post_process_latents(prior_latents)

        image_embeddings = prior_latents

        # done prior

        # decoder

        text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj(
            image_embeddings=image_embeddings,
            prompt_embeds=prompt_embeds,
            text_encoder_hidden_states=text_encoder_hidden_states,
            do_classifier_free_guidance=do_classifier_free_guidance,
        )

        if device.type == "mps":
            # HACK: MPS: There is a panic when padding bool tensors,
            # so cast to int tensor for the pad and back to bool afterwards
            text_mask = text_mask.type(torch.int)
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1)
            decoder_text_mask = decoder_text_mask.type(torch.bool)
        else:
            decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True)

        self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device)
        decoder_timesteps_tensor = self.decoder_scheduler.timesteps

        num_channels_latents = self.decoder.config.in_channels
        height = self.decoder.config.sample_size
        width = self.decoder.config.sample_size

        decoder_latents = self.prepare_latents(
            (batch_size, num_channels_latents, height, width),
            text_encoder_hidden_states.dtype,
            device,
            generator,
            None,
            self.decoder_scheduler,
        )

        for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents

            noise_pred = self.decoder(
                sample=latent_model_input,
                timestep=t,
                encoder_hidden_states=text_encoder_hidden_states,
                class_labels=additive_clip_time_embeddings,
                attention_mask=decoder_text_mask,
            ).sample

            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1)
                noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1)
                noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond)
                noise_pred = torch.cat([noise_pred, predicted_variance], dim=1)

            if i + 1 == decoder_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = decoder_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            decoder_latents = self.decoder_scheduler.step(
                noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator
            ).prev_sample

        decoder_latents = decoder_latents.clamp(-1, 1)

        image_small = decoder_latents

        # done decoder

        # super res

        self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device)
        super_res_timesteps_tensor = self.super_res_scheduler.timesteps

        channels = self.super_res_first.config.in_channels // 2
        height = self.super_res_first.config.sample_size
        width = self.super_res_first.config.sample_size

        super_res_latents = self.prepare_latents(
            (batch_size, channels, height, width),
            image_small.dtype,
            device,
            generator,
            None,
            self.super_res_scheduler,
        )

        if device.type == "mps":
            # MPS does not support many interpolations
            image_upscaled = F.interpolate(image_small, size=[height, width])
        else:
            interpolate_antialias = {}
            if "antialias" in inspect.signature(F.interpolate).parameters:
                interpolate_antialias["antialias"] = True

            image_upscaled = F.interpolate(
                image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias
            )

        for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)):
            # no classifier free guidance

            if i == super_res_timesteps_tensor.shape[0] - 1:
                unet = self.super_res_last
            else:
                unet = self.super_res_first

            latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1)

            noise_pred = unet(
                sample=latent_model_input,
                timestep=t,
            ).sample

            if i + 1 == super_res_timesteps_tensor.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = super_res_timesteps_tensor[i + 1]

            # compute the previous noisy sample x_t -> x_t-1
            super_res_latents = self.super_res_scheduler.step(
                noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator
            ).prev_sample

        image = super_res_latents
        # done super res

        # post processing

        image = image * 0.5 + 0.5
        image = image.clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)