The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ValueError Message: Each config must include `config_name` field with a string name of a config, but got emoji. Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 79, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1885, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1236, in get_module metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/metadata.py", line 227, in from_dataset_card_data raise ValueError( ValueError: Each config must include `config_name` field with a string name of a config, but got emoji.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset Card for tweet_eval
Dataset Summary
TweetEval consists of seven heterogenous tasks in Twitter, all framed as multi-class tweet classification. The tasks include - irony, hate, offensive, stance, emoji, emotion, and sentiment. All tasks have been unified into the same benchmark, with each dataset presented in the same format and with fixed training, validation and test splits.
Supported Tasks and Leaderboards
text_classification
: The dataset can be trained using a SentenceClassification model from HuggingFace transformers.
Languages
The text in the dataset is in English, as spoken by Twitter users.
Dataset Structure
Data Instances
An instance from emoji
config:
{'label': 12, 'text': 'Sunday afternoon walking through Venice in the sun with @user ๏ธ ๏ธ ๏ธ @ Abbot Kinney, Venice'}
An instance from emotion
config:
{'label': 2, 'text': "โWorry is a down payment on a problem you may never have'. \xa0Joyce Meyer. #motivation #leadership #worry"}
An instance from hate
config:
{'label': 0, 'text': '@user nice new signage. Are you not concerned by Beatlemania -style hysterical crowds crongregating on youโฆ'}
An instance from irony
config:
{'label': 1, 'text': 'seeing ppl walking w/ crutches makes me really excited for the next 3 weeks of my life'}
An instance from offensive
config:
{'label': 0, 'text': '@user Bono... who cares. Soon people will understand that they gain nothing from following a phony celebrity. Become a Leader of your people instead or help and support your fellow countrymen.'}
An instance from sentiment
config:
{'label': 2, 'text': '"QT @user In the original draft of the 7th book, Remus Lupin survived the Battle of Hogwarts. #HappyBirthdayRemusLupin"'}
An instance from stance_abortion
config:
{'label': 1, 'text': 'we remind ourselves that love means to be willing to give until it hurts - Mother Teresa'}
An instance from stance_atheism
config:
{'label': 1, 'text': '@user Bless Almighty God, Almighty Holy Spirit and the Messiah. #SemST'}
An instance from stance_climate
config:
{'label': 0, 'text': 'Why Is The Pope Upset? via @user #UnzippedTruth #PopeFrancis #SemST'}
An instance from stance_feminist
config:
{'label': 1, 'text': "@user @user is the UK's answer to @user and @user #GamerGate #SemST"}
An instance from stance_hillary
config:
{'label': 1, 'text': "If a man demanded staff to get him an ice tea he'd be called a sexists elitist pig.. Oink oink #Hillary #SemST"}
Data Fields
For emoji
config:
text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: โค1
: ๐2
: ๐3
: ๐4
: ๐ฅ5
: ๐6
: ๐7
: โจ8
: ๐9
: ๐10
: ๐ท11
: ๐บ๐ธ12
: โ13
: ๐14
: ๐15
: ๐ฏ16
: ๐17
: ๐18
: ๐ธ19
: ๐ Foremotion
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: anger1
: joy2
: optimism3
: sadness Forhate
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non-hate1
: hate Forirony
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non_irony1
: irony Foroffensive
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: non-offensive1
: offensive Forsentiment
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: negative1
: neutral2
: positive Forstance_abortion
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor Forstance_atheism
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor Forstance_climate
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor Forstance_feminist
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor Forstance_hillary
config:text
: astring
feature containing the tweet.label
: anint
classification label with the following mapping:0
: none1
: against2
: favor
Data Splits
name | train | validation | test |
---|---|---|---|
emoji | 45000 | 5000 | 50000 |
emotion | 3257 | 374 | 1421 |
hate | 9000 | 1000 | 2970 |
irony | 2862 | 955 | 784 |
offensive | 11916 | 1324 | 860 |
sentiment | 45615 | 2000 | 12284 |
stance_abortion | 587 | 66 | 280 |
stance_atheism | 461 | 52 | 220 |
stance_climate | 355 | 40 | 169 |
stance_feminist | 597 | 67 | 285 |
stance_hillary | 620 | 69 | 295 |
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
Francesco Barbieri, Jose Camacho-Collados, Luis Espiinosa-Anke and Leonardo Neves through Cardiff NLP.
Licensing Information
This is not a single dataset, therefore each subset has its own license (the collection itself does not have additional restrictions). All of the datasets require complying with Twitter Terms Of Service and Twitter API Terms Of Service Additionally the license are:
- emoji: Undefined
- emotion(EmoInt): Undefined
- hate (HateEval): Need permission here
- irony: Undefined
- Offensive: Undefined
- Sentiment: Creative Commons Attribution 3.0 Unported License
- Stance: Undefined
Citation Information
@inproceedings{barbieri2020tweeteval,
title={{TweetEval:Unified Benchmark and Comparative Evaluation for Tweet Classification}},
author={Barbieri, Francesco and Camacho-Collados, Jose and Espinosa-Anke, Luis and Neves, Leonardo},
booktitle={Proceedings of Findings of EMNLP},
year={2020}
}
If you use any of the TweetEval datasets, please cite their original publications:
Emotion Recognition:
@inproceedings{mohammad2018semeval,
title={Semeval-2018 task 1: Affect in tweets},
author={Mohammad, Saif and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana},
booktitle={Proceedings of the 12th international workshop on semantic evaluation},
pages={1--17},
year={2018}
}
Emoji Prediction:
@inproceedings{barbieri2018semeval,
title={Semeval 2018 task 2: Multilingual emoji prediction},
author={Barbieri, Francesco and Camacho-Collados, Jose and Ronzano, Francesco and Espinosa-Anke, Luis and
Ballesteros, Miguel and Basile, Valerio and Patti, Viviana and Saggion, Horacio},
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
pages={24--33},
year={2018}
}
Irony Detection:
@inproceedings{van2018semeval,
title={Semeval-2018 task 3: Irony detection in english tweets},
author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique},
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
pages={39--50},
year={2018}
}
Hate Speech Detection:
@inproceedings{basile-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in {T}witter",
author = "Basile, Valerio and Bosco, Cristina and Fersini, Elisabetta and Nozza, Debora and Patti, Viviana and
Rangel Pardo, Francisco Manuel and Rosso, Paolo and Sanguinetti, Manuela",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/S19-2007",
doi = "10.18653/v1/S19-2007",
pages = "54--63"
}
Offensive Language Identification:
@inproceedings{zampieri2019semeval,
title={SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval)},
author={Zampieri, Marcos and Malmasi, Shervin and Nakov, Preslav and Rosenthal, Sara and Farra, Noura and Kumar, Ritesh},
booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
pages={75--86},
year={2019}
}
Sentiment Analysis:
@inproceedings{rosenthal2017semeval,
title={SemEval-2017 task 4: Sentiment analysis in Twitter},
author={Rosenthal, Sara and Farra, Noura and Nakov, Preslav},
booktitle={Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017)},
pages={502--518},
year={2017}
}
Stance Detection:
@inproceedings{mohammad2016semeval,
title={Semeval-2016 task 6: Detecting stance in tweets},
author={Mohammad, Saif and Kiritchenko, Svetlana and Sobhani, Parinaz and Zhu, Xiaodan and Cherry, Colin},
booktitle={Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)},
pages={31--41},
year={2016}
}
- Downloads last month
- 77