File size: 6,093 Bytes
c09a002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d44f77
c09a002
 
 
 
 
 
 
 
 
c579279
c09a002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b45414
c09a002
 
7b45414
c09a002
29ce062
c09a002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
import datasets


_CITATION = """\
@misc{Sofwath_2023, 
    title = "Dhivehi Presidential Speech Dataset", 
    url = "https://huggingface.co/datasets/dash8x/presidential_speech", 
    journal = "Hugging Face",
    author = "Sofwath", 
    year = "2018", 
    month = jul
} 
"""

_DESCRIPTION = """\
Dhivehi Presidential Speech is a Dhivehi speech dataset created from data extracted and 
processed by [Sofwath](https://github.com/Sofwath) as part of a collection of Dhivehi 
datasets found [here](https://github.com/Sofwath/DhivehiDatasets).

The dataset contains around 2.5 hrs (1 GB) of speech collected from Maldives President's Office
consisting of 7 speeches given by President Yaameen Abdhul Gayyoom. 
"""

_HOMEPAGE = 'https://github.com/Sofwath/DhivehiDatasets'

_LICENSE = 'CC BY-NC-SA 4.0'

# Source data: 'https://drive.google.com/file/d/1vhMXoB2L23i4HfAGX7EYa4L-sfE4ThU5/view?usp=sharing'
_DATA_URL = 'data'

class DhivehiPresidentialSpeech(datasets.GeneratorBasedBuilder):
    """Dhivehi Presidential Speech is a free Dhivehi speech corpus consisting of around 2.5 hours of
    recorded speech prepared for Dhivehi Automatic Speech Recognition task."""

    VERSION = datasets.Version('1.0.0')

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    'path': datasets.Value('string'),
                    'audio': datasets.Audio(sampling_rate=16_000),
                    'sentence': datasets.Value('string'),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        dl_manager.download_config.ignore_url_params = True
        audio_path = {}
        local_extracted_archive = {}
        metadata_path = {}

        split_type = {
            'train': datasets.Split.TRAIN, 
            'test': datasets.Split.TEST,
            'validation': datasets.Split.VALIDATION,
        }

        for split in split_type:
            audio_path[split] = dl_manager.download(f'{_DATA_URL}/audio_{split}.tar.gz')
            local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None
            metadata_path[split] = dl_manager.download_and_extract(f'{_DATA_URL}/metadata_{split}.csv')

        path_to_clips = 'dv-presidential-speech'

        return [
            datasets.SplitGenerator(
                name=split_type[split],
                gen_kwargs={
                    'local_extracted_archive': local_extracted_archive[split],
                    'audio_files': dl_manager.iter_archive(audio_path[split]),
                    'metadata_path': metadata_path[split],
                    'path_to_clips': f'{path_to_clips}-{split}/waves',
                },
            ) for split in split_type
        ]

    def _generate_examples(
        self,
        local_extracted_archive,
        audio_files,
        metadata_path,
        path_to_clips,
    ):
        """Yields examples."""
        data_fields = list(self._info().features.keys())
        metadata = {}
        with open(metadata_path, 'r', encoding='utf-8') as f:
            reader = csv.reader(f, delimiter=',', quotechar='"')

            for row in reader:
                row_dict = {}
                row_dict['path'] = row[0]
                row_dict['sentence'] = row[1]

                # if data is incomplete, fill with empty values
                for field in data_fields:
                    if field not in row_dict:
                        row_dict[field] = ''

                metadata[row_dict['path']] = row_dict

        id_ = 0
        for path, f in audio_files:
            file_name = os.path.splitext(os.path.basename(path))[0]

            if file_name in metadata:
                result = dict(metadata[file_name])
                # set the audio feature and the path to the extracted file
                path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                result['audio'] = {'path': path, 'bytes': f.read()}
                result['path'] = path
                yield id_, result
                id_ += 1