Dataset Viewer
Auto-converted to Parquet
text
stringlengths
0
70
Context Windows
===============
Sample Size: 342
Central Tendency:
Mean: 198193.359649
Median: 131072.000000
Spread:
Min: 2824.000000
Max: 2000000.000000
Std Dev: 283137.428820
IQR: 167232.000000
Quartiles:
Q1 (25th percentile): 32768.000000
Q2 (50th percentile): 131072.000000
Q3 (75th percentile): 200000.000000
Additional Percentiles:
10th: 30200.000000
90th: 300000.000000
95th: 1045206.800000
99th: 1048576.000000
Context Windows - Stratification
=================================
Range Distribution:
2824.000000 - 5443.537545: 8 models ( 2.3%)
5443.537545 - 10492.953615: 18 models ( 5.3%)
10492.953615 - 20226.199351: 8 models ( 2.3%)
20226.199351 - 38987.987100: 53 models ( 15.5%)
38987.987100 - 75153.176912: 18 models ( 5.3%)
75153.176912 - 144865.134626: 124 models ( 36.3%)
144865.134626 - 279241.784480: 77 models ( 22.5%)
279241.784480 - 538265.983741: 10 models ( 2.9%)
538265.983741 - 1037560.584969: 8 models ( 2.3%)
1037560.584969 - 2000000.000000: 18 models ( 5.3%)
Input Token Pricing (per 1M tokens)
===================================
Sample Size: 294
Central Tendency:
Mean: 1.932805
Median: 0.300000
Spread:
Min: 0.005000
Max: 150.000000
Std Dev: 9.365441
IQR: 1.000000
Quartiles:
Q1 (25th percentile): 0.100000
Q2 (50th percentile): 0.300000
Q3 (75th percentile): 1.100000
Additional Percentiles:
10th: 0.042400
90th: 3.000000
95th: 5.350000
99th: 20.700000
Input Token Pricing - Stratification
=====================================
Range Distribution:
0.005000 - 0.014018: 1 models ( 0.3%)
0.014018 - 0.039300: 23 models ( 7.8%)
0.039300 - 0.110181: 60 models ( 20.4%)
0.110181 - 0.308900: 71 models ( 24.1%)
0.308900 - 0.866025: 51 models ( 17.3%)
0.866025 - 2.427967: 41 models ( 13.9%)
2.427967 - 6.806986: 33 models ( 11.2%)
6.806986 - 19.083895: 10 models ( 3.4%)
19.083895 - 53.503123: 3 models ( 1.0%)
53.503123 - 150.000000: 1 models ( 0.3%)
Output Token Pricing (per 1M tokens)
====================================
Sample Size: 294
Central Tendency:
Mean: 7.074562
Median: 1.000000
Spread:
Min: 0.010000
Max: 600.000000
Std Dev: 37.152968
IQR: 3.700000
Quartiles:
Q1 (25th percentile): 0.300000
End of preview. Expand in Data Studio

OpenRouter API Pricing Analysis Dataset

Overview

This dataset provides a point-in-time capture of pricing and parameters for LLMs available through the OpenRouter API for inference.

Contents

Raw Data (raw/)

Contains the original data extracted from the OpenRouter API, including:

  • Model pricing (input/output token costs)
  • Model parameters and specifications
  • Computed fields such as output/input token price ratios

Enhanced Data (hf-enhanced/)

Augmented dataset created by mapping Hugging Face IDs from the OpenRouter API to the Hugging Face API, providing additional model metadata and information.

Use Cases

  • Comparative pricing analysis across LLM providers
  • Cost optimization for API-based LLM inference
  • Model selection based on pricing and parameters
  • Historical pricing tracking (point-in-time snapshot)

Data Source

  • Primary: OpenRouter API
  • Enhancement: Hugging Face API (for models with HF IDs)

Note

This is a point-in-time snapshot. API pricing and model availability may change over time.

Downloads last month
53

Collection including danielrosehill/Open-Router-API-Pricing-Analysis