File size: 5,833 Bytes
33d0712
 
1d5654b
 
 
 
 
 
 
 
 
de69f45
 
 
 
11edf1a
809d1ad
 
11edf1a
7ceab29
de69f45
 
 
 
 
 
 
 
 
 
 
 
c84439c
 
de69f45
 
 
 
 
 
 
 
 
 
 
c84439c
de69f45
 
 
 
 
c84439c
de69f45
 
c84439c
de69f45
 
 
 
5cf6b55
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
task_categories:
- image-to-text
- visual-question-answering
- image-classification
language:
- en
pretty_name: PatFig
size_categories:
- 10K<n<100K
---

# PatFig Dataset

<p align="center">
  <span style="display: inline-block; margin-right: 20px;"><img src="https://cdn-lfs-us-1.huggingface.co/repos/25/0c/250cb7eb9b83b2bd76ad6440700971baf0ec2981fdcb94b7fad768f2eb59fecc/3c626eeb8727520da886493356c116cc5165a0104fa7a3445bce92cb4117591c?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27PatFig_example.png%3B+filename%3D%22PatFig_example.png%22%3B&response-content-type=image%2Fpng&Expires=1709460936&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwOTQ2MDkzNn19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zLzI1LzBjLzI1MGNiN2ViOWI4M2IyYmQ3NmFkNjQ0MDcwMDk3MWJhZjBlYzI5ODFmZGNiOTRiN2ZhZDc2OGYyZWI1OWZlY2MvM2M2MjZlZWI4NzI3NTIwZGE4ODY0OTMzNTZjMTE2Y2M1MTY1YTAxMDRmYTdhMzQ0NWJjZTkyY2I0MTE3NTkxYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=j-MjR0e7UKtK8514N2S9QLgw3ewib9FNfNkRqOuOrwnObDuYJjmUltFy3qFvoCJ9t6crPzveQZM5hH%7EwZDv4LuoVaoc6SxxfaIAzk5EQO4dTBIEonVnylHUUSJZUlWNhhBENPxOeZEfxJltQz%7E64L23e8nrjeAXImmVz0Ak9GEuxmKTJZMG695IoWSFYjtRXmwy1ELbrupfGDoSRM22WX%7E9rbmQ%7EAFyczBkDVl-eYjS4a78ecnufPnXHkszESKOQsKjYl21DMjgiQXREy9UCkGosDqNSLGMHMA3TfpbxxpHYEnZEdOWFE-cqkkD2VEAZnqvaxV50R8LtvKo0v45JMA__&Key-Pair-Id=KCD77M1F0VK2B" alt="PatFig Image Captioning Version" width="286"/></span>
  <span style="display: inline-block; margin-left: 20px;"><img src="https://cdn-lfs-us-1.huggingface.co/repos/25/0c/250cb7eb9b83b2bd76ad6440700971baf0ec2981fdcb94b7fad768f2eb59fecc/532251dbff11e080a91b60d91956c49420a70381143cd8c43ea80fb94608d7f9?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27PatFigVQA_example.png%3B+filename%3D%22PatFigVQA_example.png%22%3B&response-content-type=image%2Fpng&Expires=1709460860&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcwOTQ2MDg2MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zLzI1LzBjLzI1MGNiN2ViOWI4M2IyYmQ3NmFkNjQ0MDcwMDk3MWJhZjBlYzI5ODFmZGNiOTRiN2ZhZDc2OGYyZWI1OWZlY2MvNTMyMjUxZGJmZjExZTA4MGE5MWI2MGQ5MTk1NmM0OTQyMGE3MDM4MTE0M2NkOGM0M2VhODBmYjk0NjA4ZDdmOT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=Zvp0SC9Pu8DwXTh790z2l4dHg%7EBbB3Cq3gZTxQ6QVED5KO96RXD9KInXWIDDNc-dc3mE5Oyu3RO44pPt0ku5kfCd1BMUQRGL9hr02Dmz-J4JGJTvwmtoowMQTOpObL3rlY34Cg9HJU672rM1eigSAmfrxDgHGwXJKRnXvggcRZ4ARzqtauc%7E7ZyNMRkq37KCXcb--ucxUyerLUJs6n4lUBOBct1-9%7E%7EupeUOxjqoRsjk9zr1Vlx8MOBsBKwKQLfBCZtGBBmz7DIgXFQd1WP57sq%7EjZGm0JIM3bXPGpK47ouzhAgsmRQCVRw1AkO2Cgn%7EIn9gOP10OiTOMB4P%7EvPPIQ__&Key-Pair-Id=KCD77M1F0VK2B" alt="PatFig VQA Version" width="300""/></span>
</p>

## Table of Contents
- [Introduction](#introduction)
- [Dataset Description](#dataset-description)
  - [Overview](#overview)
  - [Structure](#structure)
  - [Categories](#categories)
- [Usage](#usage)
- [Challenges and Considerations](#challenges-and-considerations)
- [License and Usage Guidelines](#license-and-usage-guidelines)


## Introduction
The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research and applications in visually situated language understanding, patent analysis, and automated documentation processing.
The overarching goal of this dataset is to advance the research in visually situated language understanding towards more hollistic consumption of the visual and textual data.

## Dataset Description

### Overview
This dataset includes patent figures accompanied by short and long captions, reference numerals, corresponding terms, and a minimal set of claims, offering a detailed insight into the depicted inventions.

### Structure
- **Image Files**: Technical drawings, block diagrams, flowcharts, plots, and grayscale photographs.
- **Captions**: Each figure is accompanied by a short and long caption describing its content and context.
- **Reference Numerals and Terms**: Key components in the figures are linked to their descriptions through reference numerals.
- **Minimal Set of Claims**: Claims sentences summarizing the interactions among elements within each figure.
- **Metadata**: Includes image names, publication numbers, titles, figure identifiers, and more. The detailed descriptions of the fields are available in the Dataset Documentation. 

### Categories
The dataset is categorized according to the International Patent Classification (IPC) system, ensuring a diverse representation of technological domains.

## Usage
The PatFig Dataset is intended for use in patent image analysis, document image processing, visual question answering tasks, and image captioning in technical contexts. Users are encouraged to explore innovative applications in related fields. 

## Challenges and Considerations
Users should be aware of challenges such as interpreting compound figures. PatFig was built automatically using high-performance machine-learning and deep-learning methods. Therefore, the data might contain noise, which was mentioned in the corresponding paper. 

## License and Usage Guidelines
The dataset is released under a Creative Commons Attribution-NonCommercial 2.0 Generic (CC BY-NC 2.0) License. It is intended for non-commercial use, and users must adhere to the license terms.

## Cite as
```
@inproceedings{aubakirova2023patfig,
  title={PatFig: Generating Short and Long Captions for Patent Figures},
  author={Aubakirova, Dana and Gerdes, Kim and Liu, Lufei},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2843--2849},
  year={2023}
}
```