Convert dataset to Parquet

#9
README.md CHANGED
@@ -38,16 +38,16 @@ dataset_info:
38
  '5': surprise
39
  splits:
40
  - name: train
41
- num_bytes: 1741597
42
  num_examples: 16000
43
  - name: validation
44
- num_bytes: 214703
45
  num_examples: 2000
46
  - name: test
47
- num_bytes: 217181
48
  num_examples: 2000
49
- download_size: 740883
50
- dataset_size: 2173481
51
  - config_name: unsplit
52
  features:
53
  - name: text
@@ -68,6 +68,15 @@ dataset_info:
68
  num_examples: 416809
69
  download_size: 15388281
70
  dataset_size: 45445685
 
 
 
 
 
 
 
 
 
71
  train-eval-index:
72
  - config: default
73
  task: text-classification
 
38
  '5': surprise
39
  splits:
40
  - name: train
41
+ num_bytes: 1741533
42
  num_examples: 16000
43
  - name: validation
44
+ num_bytes: 214695
45
  num_examples: 2000
46
  - name: test
47
+ num_bytes: 217173
48
  num_examples: 2000
49
+ download_size: 1287193
50
+ dataset_size: 2173401
51
  - config_name: unsplit
52
  features:
53
  - name: text
 
68
  num_examples: 416809
69
  download_size: 15388281
70
  dataset_size: 45445685
71
+ configs:
72
+ - config_name: split
73
+ data_files:
74
+ - split: train
75
+ path: split/train-*
76
+ - split: validation
77
+ path: split/validation-*
78
+ - split: test
79
+ path: split/test-*
80
  train-eval-index:
81
  - config: default
82
  task: text-classification
dataset_infos.json CHANGED
@@ -1 +1,161 @@
1
- {"default": {"description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://github.com/dair-ai/emotion_dataset", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 6, "names": ["sadness", "joy", "love", "anger", "fear", "surprise"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": {"input": "text", "output": "label"}, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["anger", "fear", "joy", "love", "sadness", "surprise"]}], "builder_name": "emotion", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1741541, "num_examples": 16000, "dataset_name": "emotion"}, "validation": {"name": "validation", "num_bytes": 214699, "num_examples": 2000, "dataset_name": "emotion"}, "test": {"name": "test", "num_bytes": 217177, "num_examples": 2000, "dataset_name": "emotion"}}, "download_checksums": {"https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {"num_bytes": 1658616, "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"}, "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {"num_bytes": 204240, "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"}, "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {"num_bytes": 206760, "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"}}, "download_size": 2069616, "post_processing_size": null, "dataset_size": 2173417, "size_in_bytes": 4243033}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "default": {
3
+ "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
4
+ "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
5
+ "homepage": "https://github.com/dair-ai/emotion_dataset",
6
+ "license": "",
7
+ "features": {
8
+ "text": {
9
+ "dtype": "string",
10
+ "id": null,
11
+ "_type": "Value"
12
+ },
13
+ "label": {
14
+ "num_classes": 6,
15
+ "names": [
16
+ "sadness",
17
+ "joy",
18
+ "love",
19
+ "anger",
20
+ "fear",
21
+ "surprise"
22
+ ],
23
+ "names_file": null,
24
+ "id": null,
25
+ "_type": "ClassLabel"
26
+ }
27
+ },
28
+ "post_processed": null,
29
+ "supervised_keys": {
30
+ "input": "text",
31
+ "output": "label"
32
+ },
33
+ "task_templates": [
34
+ {
35
+ "task": "text-classification",
36
+ "text_column": "text",
37
+ "label_column": "label",
38
+ "labels": [
39
+ "anger",
40
+ "fear",
41
+ "joy",
42
+ "love",
43
+ "sadness",
44
+ "surprise"
45
+ ]
46
+ }
47
+ ],
48
+ "builder_name": "emotion",
49
+ "config_name": "default",
50
+ "version": {
51
+ "version_str": "0.0.0",
52
+ "description": null,
53
+ "major": 0,
54
+ "minor": 0,
55
+ "patch": 0
56
+ },
57
+ "splits": {
58
+ "train": {
59
+ "name": "train",
60
+ "num_bytes": 1741541,
61
+ "num_examples": 16000,
62
+ "dataset_name": "emotion"
63
+ },
64
+ "validation": {
65
+ "name": "validation",
66
+ "num_bytes": 214699,
67
+ "num_examples": 2000,
68
+ "dataset_name": "emotion"
69
+ },
70
+ "test": {
71
+ "name": "test",
72
+ "num_bytes": 217177,
73
+ "num_examples": 2000,
74
+ "dataset_name": "emotion"
75
+ }
76
+ },
77
+ "download_checksums": {
78
+ "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1": {
79
+ "num_bytes": 1658616,
80
+ "checksum": "3ab03d945a6cb783d818ccd06dafd52d2ed8b4f62f0f85a09d7d11870865b190"
81
+ },
82
+ "https://www.dropbox.com/s/2mzialpsgf9k5l3/val.txt?dl=1": {
83
+ "num_bytes": 204240,
84
+ "checksum": "34faaa31962fe63cdf5dbf6c132ef8ab166c640254ab991af78f3aea375e79ef"
85
+ },
86
+ "https://www.dropbox.com/s/ikkqxfdbdec3fuj/test.txt?dl=1": {
87
+ "num_bytes": 206760,
88
+ "checksum": "60f531690d20127339e7f054edc299a82c627b5ec0dd5d552d53d544e0cfcc17"
89
+ }
90
+ },
91
+ "download_size": 2069616,
92
+ "post_processing_size": null,
93
+ "dataset_size": 2173417,
94
+ "size_in_bytes": 4243033
95
+ },
96
+ "split": {
97
+ "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
98
+ "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
99
+ "homepage": "https://github.com/dair-ai/emotion_dataset",
100
+ "license": "The dataset should be used for educational and research purposes only",
101
+ "features": {
102
+ "text": {
103
+ "dtype": "string",
104
+ "_type": "Value"
105
+ },
106
+ "label": {
107
+ "names": [
108
+ "sadness",
109
+ "joy",
110
+ "love",
111
+ "anger",
112
+ "fear",
113
+ "surprise"
114
+ ],
115
+ "_type": "ClassLabel"
116
+ }
117
+ },
118
+ "supervised_keys": {
119
+ "input": "text",
120
+ "output": "label"
121
+ },
122
+ "task_templates": [
123
+ {
124
+ "task": "text-classification",
125
+ "label_column": "label"
126
+ }
127
+ ],
128
+ "builder_name": "parquet",
129
+ "dataset_name": "emotion",
130
+ "config_name": "split",
131
+ "version": {
132
+ "version_str": "1.0.0",
133
+ "major": 1,
134
+ "minor": 0,
135
+ "patch": 0
136
+ },
137
+ "splits": {
138
+ "train": {
139
+ "name": "train",
140
+ "num_bytes": 1741533,
141
+ "num_examples": 16000,
142
+ "dataset_name": null
143
+ },
144
+ "validation": {
145
+ "name": "validation",
146
+ "num_bytes": 214695,
147
+ "num_examples": 2000,
148
+ "dataset_name": null
149
+ },
150
+ "test": {
151
+ "name": "test",
152
+ "num_bytes": 217173,
153
+ "num_examples": 2000,
154
+ "dataset_name": null
155
+ }
156
+ },
157
+ "download_size": 1287193,
158
+ "dataset_size": 2173401,
159
+ "size_in_bytes": 3460594
160
+ }
161
+ }
split/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48fa6e1b806fd993941a59b6228389bf7b817c4aac696c504f4b3b83b2688a93
3
+ size 128987
split/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:829ada73c69a4422a5c36dae162629150289bef774681a3b7536311b5c3768be
3
+ size 1030740
split/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed258cf1c71f0b590478cb0beb90384e5b432530a2b59e53dea7d1c7b272fba5
3
+ size 127466