File size: 6,960 Bytes
77fbc00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import torch
import numpy as np
from PIL import Image, ImageFilter
from modules.util import resample_image, set_image_shape_ceil, get_image_shape_ceil
from modules.upscaler import perform_upscale
import cv2
inpaint_head_model = None
class InpaintHead(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head = torch.nn.Parameter(torch.empty(size=(320, 5, 3, 3), device='cpu'))
def __call__(self, x):
x = torch.nn.functional.pad(x, (1, 1, 1, 1), "replicate")
return torch.nn.functional.conv2d(input=x, weight=self.head)
current_task = None
def box_blur(x, k):
x = Image.fromarray(x)
x = x.filter(ImageFilter.BoxBlur(k))
return np.array(x)
def max_filter_opencv(x, ksize=3):
# Use OpenCV maximum filter
# Make sure the input type is int16
return cv2.dilate(x, np.ones((ksize, ksize), dtype=np.int16))
def morphological_open(x):
# Convert array to int16 type via threshold operation
x_int16 = np.zeros_like(x, dtype=np.int16)
x_int16[x > 127] = 256
for i in range(32):
# Use int16 type to avoid overflow
maxed = max_filter_opencv(x_int16, ksize=3) - 8
x_int16 = np.maximum(maxed, x_int16)
# Clip negative values to 0 and convert back to uint8 type
x_uint8 = np.clip(x_int16, 0, 255).astype(np.uint8)
return x_uint8
def up255(x, t=0):
y = np.zeros_like(x).astype(np.uint8)
y[x > t] = 255
return y
def imsave(x, path):
x = Image.fromarray(x)
x.save(path)
def regulate_abcd(x, a, b, c, d):
H, W = x.shape[:2]
if a < 0:
a = 0
if a > H:
a = H
if b < 0:
b = 0
if b > H:
b = H
if c < 0:
c = 0
if c > W:
c = W
if d < 0:
d = 0
if d > W:
d = W
return int(a), int(b), int(c), int(d)
def compute_initial_abcd(x):
indices = np.where(x)
a = np.min(indices[0])
b = np.max(indices[0])
c = np.min(indices[1])
d = np.max(indices[1])
abp = (b + a) // 2
abm = (b - a) // 2
cdp = (d + c) // 2
cdm = (d - c) // 2
l = int(max(abm, cdm) * 1.15)
a = abp - l
b = abp + l + 1
c = cdp - l
d = cdp + l + 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def solve_abcd(x, a, b, c, d, k):
k = float(k)
assert 0.0 <= k <= 1.0
H, W = x.shape[:2]
if k == 1.0:
return 0, H, 0, W
while True:
if b - a >= H * k and d - c >= W * k:
break
add_h = (b - a) < (d - c)
add_w = not add_h
if b - a == H:
add_w = True
if d - c == W:
add_h = True
if add_h:
a -= 1
b += 1
if add_w:
c -= 1
d += 1
a, b, c, d = regulate_abcd(x, a, b, c, d)
return a, b, c, d
def fooocus_fill(image, mask):
current_image = image.copy()
raw_image = image.copy()
area = np.where(mask < 127)
store = raw_image[area]
for k, repeats in [(512, 2), (256, 2), (128, 4), (64, 4), (33, 8), (15, 8), (5, 16), (3, 16)]:
for _ in range(repeats):
current_image = box_blur(current_image, k)
current_image[area] = store
return current_image
class InpaintWorker:
def __init__(self, image, mask, use_fill=True, k=0.618):
a, b, c, d = compute_initial_abcd(mask > 0)
a, b, c, d = solve_abcd(mask, a, b, c, d, k=k)
# interested area
self.interested_area = (a, b, c, d)
self.interested_mask = mask[a:b, c:d]
self.interested_image = image[a:b, c:d]
# super resolution
if get_image_shape_ceil(self.interested_image) < 1024:
self.interested_image = perform_upscale(self.interested_image)
# resize to make images ready for diffusion
self.interested_image = set_image_shape_ceil(self.interested_image, 1024)
self.interested_fill = self.interested_image.copy()
H, W, C = self.interested_image.shape
# process mask
self.interested_mask = up255(resample_image(self.interested_mask, W, H), t=127)
# compute filling
if use_fill:
self.interested_fill = fooocus_fill(self.interested_image, self.interested_mask)
# soft pixels
self.mask = morphological_open(mask)
self.image = image
# ending
self.latent = None
self.latent_after_swap = None
self.swapped = False
self.latent_mask = None
self.inpaint_head_feature = None
return
def load_latent(self, latent_fill, latent_mask, latent_swap=None):
self.latent = latent_fill
self.latent_mask = latent_mask
self.latent_after_swap = latent_swap
return
def patch(self, inpaint_head_model_path, inpaint_latent, inpaint_latent_mask, model):
global inpaint_head_model
if inpaint_head_model is None:
inpaint_head_model = InpaintHead()
sd = torch.load(inpaint_head_model_path, map_location='cpu')
inpaint_head_model.load_state_dict(sd)
feed = torch.cat([
inpaint_latent_mask,
model.model.process_latent_in(inpaint_latent)
], dim=1)
inpaint_head_model.to(device=feed.device, dtype=feed.dtype)
inpaint_head_feature = inpaint_head_model(feed)
def input_block_patch(h, transformer_options):
if transformer_options["block"][1] == 0:
h = h + inpaint_head_feature.to(h)
return h
m = model.clone()
m.set_model_input_block_patch(input_block_patch)
return m
def swap(self):
if self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = True
return
def unswap(self):
if not self.swapped:
return
if self.latent is None:
return
if self.latent_after_swap is None:
return
self.latent, self.latent_after_swap = self.latent_after_swap, self.latent
self.swapped = False
return
def color_correction(self, img):
fg = img.astype(np.float32)
bg = self.image.copy().astype(np.float32)
w = self.mask[:, :, None].astype(np.float32) / 255.0
y = fg * w + bg * (1 - w)
return y.clip(0, 255).astype(np.uint8)
def post_process(self, img):
a, b, c, d = self.interested_area
content = resample_image(img, d - c, b - a)
result = self.image.copy()
result[a:b, c:d] = content
result = self.color_correction(result)
return result
def visualize_mask_processing(self):
return [self.interested_fill, self.interested_mask, self.interested_image]
|