File size: 13,401 Bytes
e0e88f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch
import copy
import re
import warnings
import numpy as np
from .adv_encode import advanced_encode_from_tokens, encode_token_weights_g, encode_token_weights_l, encode_token_weights, prepareXL
from comfy.sdxl_clip import SDXLClipModel
#sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
def replace_embeddings(max_token, prompt, replacements=None):
if replacements is None:
emb_lookup = []
else:
emb_lookup = replacements.copy()
max_token += len(emb_lookup)
def get_replacement(embedding):
for e, n in emb_lookup:
if torch.equal(embedding, e):
return n
return None
tokens = []
for x in prompt:
row = []
for i in range(len(x)):
emb = x[i][0]
if not torch.is_tensor(emb):
row.append(emb)
else:
n = get_replacement(emb)
if n is not None:
row.append(n)
else:
max_token += 1
row.append(max_token)
emb_lookup.append((emb,max_token))
tokens.append(row)
tokens = np.array(tokens)[:,1:-1].reshape(-1)
return (tokens, emb_lookup)
def unpad_prompt(end_token, prompt):
res = np.trim_zeros(prompt, 'b')
return np.trim_zeros(res-end_token, 'b')+end_token
class CLIPRegionsBasePrompt:
@classmethod
def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
RETURN_TYPES = ("CLIPREGION",)
FUNCTION = "init_prompt"
CATEGORY = "conditioning/cutoff"
def init_prompt(self, clip, text):
tokens = clip.tokenize(text, return_word_ids=True)
return ({
"clip" : clip,
"base_tokens" : tokens,
"regions" : [],
"targets" : [],
"weights" : [],
},)
def get_sublists(super_list, sub_list):
positions = []
for candidate_ind in (i for i,e in enumerate(super_list) if e==sub_list[0]):
if super_list[candidate_ind:candidate_ind+len(sub_list)] == sub_list:
positions.append(candidate_ind)
return positions
class CLIPSetRegion:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"region_text": ("STRING", {"multiline": True}),
"target_text": ("STRING", {"multiline": False}),
"weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.05})}}
RETURN_TYPES = ("CLIPREGION",)
FUNCTION = "add_clip_region"
CATEGORY = "conditioning/cutoff"
def add_clip_region(self, clip_regions, region_text, target_text, weight):
clip = clip_regions["clip"]
tokenizer = clip.tokenizer
base_tokens = clip_regions["base_tokens"]
if isinstance(base_tokens, dict):
base_tokens = base_tokens['g']
if hasattr(tokenizer, 'clip_g'):
tokenizer = tokenizer.clip_g
region_outputs = []
target_outputs = []
#strip input strings
region_text = region_text.strip()
target_text = target_text.strip()
endtoken = tokenizer.end_token
prompt_tokens, emb_lookup = replace_embeddings(endtoken, base_tokens)
for rt in region_text.split('\n'):
region_tokens = tokenizer.tokenize_with_weights(rt)
region_tokens, _ = replace_embeddings(endtoken, region_tokens, emb_lookup)
region_tokens = unpad_prompt(endtoken, region_tokens).tolist()
#calc region mask
region_length = len(region_tokens)
regions = get_sublists(list(prompt_tokens), region_tokens)
region_mask = np.zeros(len(prompt_tokens))
for r in regions:
region_mask[r:r+region_length] = 1
region_mask = region_mask.reshape(-1,tokenizer.max_length-2)
region_mask = np.pad(region_mask, pad_width=((0,0),(1,1)), mode='constant', constant_values=0)
region_mask = region_mask.reshape(1, -1)
region_outputs.append(region_mask)
#calc target mask
targets = []
for target in target_text.split(" "):
# deal with underscores
target = re.sub(r"(?<!\\)_", " ", target)
target = re.sub(r"\\_", "_", target)
target_tokens = tokenizer.tokenize_with_weights(target)
target_tokens, _ = replace_embeddings(endtoken, target_tokens, emb_lookup)
target_tokens = unpad_prompt(endtoken, target_tokens).tolist()
targets.extend([(x, len(target_tokens)) for x in get_sublists(region_tokens, target_tokens)])
targets = [(t_start + r, t_start + t_end + r) for r in regions for t_start, t_end in targets]
targets_mask = np.zeros(len(prompt_tokens))
for t_start, t_end in targets:
targets_mask[t_start: t_end] = 1
targets_mask = targets_mask.reshape(-1,tokenizer.max_length-2)
targets_mask = np.pad(targets_mask, pad_width=((0,0),(1,1)), mode='constant', constant_values=0)
targets_mask = targets_mask.reshape(1,-1)
target_outputs.append(targets_mask)
#prepare output
region_mask_list = clip_regions['regions'].copy()
region_mask_list.extend(region_outputs)
target_mask_list = clip_regions['targets'].copy()
target_mask_list.extend(target_outputs)
weight_list = clip_regions['weights'].copy()
weight_list.extend([weight]*len(region_outputs))
return ({
"clip" : clip,
"base_tokens" : clip_regions["base_tokens"],
"regions" : region_mask_list,
"targets" : target_mask_list,
"weights" : weight_list,
},)
def create_masked_prompt(weighted_tokens, mask, mask_token):
if isinstance(weighted_tokens, dict):
result = dict()
for k in weighted_tokens.keys():
result[k] = _create_masked_prompt(weighted_tokens[k], mask, mask_token)
return result
else:
return _create_masked_prompt(weighted_tokens, mask, mask_token)
def _create_masked_prompt(weighted_tokens, mask, mask_token):
mask_ids = list(zip(*np.nonzero(mask.reshape((len(weighted_tokens), -1)))))
new_prompt = copy.deepcopy(weighted_tokens)
for x,y in mask_ids:
new_prompt[x][y] = (mask_token,) + new_prompt[x][y][1:]
return new_prompt
def encode_from_tokens(clip, tokenized, token_normalization, weight_interpretation, return_pooled=False):
if isinstance(tokenized, dict):
embs_l = None
embs_g = None
pooled = None
if 'l' in tokenized and isinstance(clip.cond_stage_model, SDXLClipModel):
embs_l, _ = advanced_encode_from_tokens(tokenized['l'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_l),
w_max=1.0,
return_pooled=False)
if 'g' in tokenized:
embs_g, pooled = advanced_encode_from_tokens(tokenized['g'],
token_normalization,
weight_interpretation,
lambda x: encode_token_weights(clip, x, encode_token_weights_g),
w_max=1.0,
return_pooled=True)
emb, pool = prepareXL(embs_l, embs_g, pooled, .5)
else:
emb, pool = advanced_encode_from_tokens(tokenized,
token_normalization,
weight_interpretation,
lambda x: (clip.encode_from_tokens(x), None),
w_max=1.0)
if return_pooled:
return emb, pool
else:
return emb
def finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked, token_normalization='none', weight_interpretation='comfy'):
clip = clip_regions["clip"]
tokenizer = clip.tokenizer
if hasattr(tokenizer, 'clip_g'):
tokenizer = tokenizer.clip_g
base_weighted_tokens = clip_regions["base_tokens"]
if mask_token == "":
mask_token = 266#clip.tokenizer.end_token
else:
mask_token = tokenizer.tokenizer(mask_token)['input_ids'][1:-1]
if len(mask_token) > 1:
warnings.warn("mask_token does not map to a single token, using the first token instead")
mask_token = mask_token[0]
#calc global target mask
global_target_mask = np.any(np.stack(clip_regions["targets"]), axis=0).astype(int)
#calc global region mask
global_region_mask = np.any(np.stack(clip_regions["regions"]), axis=0).astype(float)
regions_sum = np.sum(np.stack(clip_regions["regions"]), axis=0)
regions_normalized = np.divide(1, regions_sum, out=np.zeros_like(regions_sum), where=regions_sum!=0)
#calc base embedding
base_embedding_full, pool = encode_from_tokens(clip, base_weighted_tokens, token_normalization, weight_interpretation, True)
base_embedding_masked = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask, mask_token), token_normalization, weight_interpretation)
base_embedding_start = base_embedding_full * (1-start_from_masked) + base_embedding_masked * start_from_masked
base_embedding_outer = base_embedding_full * (1-strict_mask) + base_embedding_masked * strict_mask
region_embeddings = []
for region, target, weight in zip (clip_regions["regions"],clip_regions["targets"],clip_regions["weights"]):
region_masking = torch.tensor(regions_normalized * region * weight, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
region_emb = encode_from_tokens(clip, create_masked_prompt(base_weighted_tokens, global_target_mask - target, mask_token), token_normalization, weight_interpretation)
region_emb -= base_embedding_start
region_emb *= region_masking
region_embeddings.append(region_emb)
region_embeddings = torch.stack(region_embeddings).sum(axis=0)
embeddings_final_mask = torch.tensor(global_region_mask, dtype=base_embedding_full.dtype, device=base_embedding_full.device).unsqueeze(-1)
embeddings_final = base_embedding_start * embeddings_final_mask + base_embedding_outer * (1 - embeddings_final_mask)
embeddings_final += region_embeddings
return ([[embeddings_final, {"pooled_output": pool}]], )
class CLIPRegionsToConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"mask_token": ("STRING", {"multiline": False, "default" : ""}),
"strict_mask": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"start_from_masked": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05})}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "finalize"
CATEGORY = "conditioning/cutoff"
def finalize(self, clip_regions, mask_token, strict_mask, start_from_masked):
return finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked)
class CLIPRegionsToConditioningADV:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_regions": ("CLIPREGION", ),
"mask_token": ("STRING", {"multiline": False, "default" : ""}),
"strict_mask": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"start_from_masked": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"token_normalization": (["none", "mean", "length", "length+mean"],),
"weight_interpretation": (["comfy", "A1111", "compel", "comfy++"],),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "finalize"
CATEGORY = "conditioning/cutoff"
def finalize(self, clip_regions, mask_token, strict_mask, start_from_masked, token_normalization, weight_interpretation):
return finalize_clip_regions(clip_regions, mask_token, strict_mask, start_from_masked, token_normalization, weight_interpretation)
NODE_CLASS_MAPPINGS = {
"BNK_CutoffBasePrompt": CLIPRegionsBasePrompt,
"BNK_CutoffSetRegions": CLIPSetRegion,
"BNK_CutoffRegionsToConditioning": CLIPRegionsToConditioning,
"BNK_CutoffRegionsToConditioning_ADV": CLIPRegionsToConditioningADV,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BNK_CutoffBasePrompt": "Cutoff Base Prompt",
"BNK_CutoffSetRegions": "Cutoff Set Regions",
"BNK_CutoffRegionsToConditioning": "Cutoff Regions To Conditioning",
"BNK_CutoffRegionsToConditioning_ADV": "Cutoff Regions To Conditioning (ADV)",
} |