Upload results for model meta-llama/Meta-Llama-3.1-70B-Instruct

#696
data/meta-llama/Meta-Llama-3.1-70B-Instruct/cot/24-09-09-19:06:49_idx10/meta-llama__Meta-Llama-3.1-70B-Instruct/results_2024-09-09T20-46-55.545377.json ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "blanditiis-eligendi-6900_lsat-rc_cot": {
4
+ "acc,none": 0.8438661710037175,
5
+ "acc_stderr,none": 0.022172665069085173,
6
+ "alias": "blanditiis-eligendi-6900_lsat-rc_cot"
7
+ },
8
+ "blanditiis-eligendi-6900_lsat-lr_cot": {
9
+ "acc,none": 0.7686274509803922,
10
+ "acc_stderr,none": 0.018691965462419528,
11
+ "alias": "blanditiis-eligendi-6900_lsat-lr_cot"
12
+ },
13
+ "blanditiis-eligendi-6900_lsat-ar_cot": {
14
+ "acc,none": 0.33043478260869563,
15
+ "acc_stderr,none": 0.031082903446842964,
16
+ "alias": "blanditiis-eligendi-6900_lsat-ar_cot"
17
+ },
18
+ "blanditiis-eligendi-6900_logiqa_cot": {
19
+ "acc,none": 0.46325878594249204,
20
+ "acc_stderr,none": 0.019945930239107165,
21
+ "alias": "blanditiis-eligendi-6900_logiqa_cot"
22
+ },
23
+ "blanditiis-eligendi-6900_logiqa2_cot": {
24
+ "acc,none": 0.6870229007633588,
25
+ "acc_stderr,none": 0.011699136143283525,
26
+ "alias": "blanditiis-eligendi-6900_logiqa2_cot"
27
+ }
28
+ },
29
+ "group_subtasks": {
30
+ "blanditiis-eligendi-6900_logiqa2_cot": [],
31
+ "blanditiis-eligendi-6900_logiqa_cot": [],
32
+ "blanditiis-eligendi-6900_lsat-ar_cot": [],
33
+ "blanditiis-eligendi-6900_lsat-lr_cot": [],
34
+ "blanditiis-eligendi-6900_lsat-rc_cot": []
35
+ },
36
+ "configs": {
37
+ "blanditiis-eligendi-6900_logiqa2_cot": {
38
+ "task": "blanditiis-eligendi-6900_logiqa2_cot",
39
+ "group": "logikon-bench",
40
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
41
+ "dataset_kwargs": {
42
+ "data_files": {
43
+ "test": "data/meta-llama/Meta-Llama-3.1-70B-Instruct/blanditiis-eligendi-6900-logiqa2.parquet"
44
+ }
45
+ },
46
+ "test_split": "test",
47
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
48
+ "doc_to_target": "{{answer}}",
49
+ "doc_to_choice": "{{options}}",
50
+ "description": "",
51
+ "target_delimiter": " ",
52
+ "fewshot_delimiter": "\n\n",
53
+ "num_fewshot": 0,
54
+ "metric_list": [
55
+ {
56
+ "metric": "acc",
57
+ "aggregation": "mean",
58
+ "higher_is_better": true
59
+ }
60
+ ],
61
+ "output_type": "multiple_choice",
62
+ "repeats": 1,
63
+ "should_decontaminate": false,
64
+ "metadata": {
65
+ "version": 0.0
66
+ }
67
+ },
68
+ "blanditiis-eligendi-6900_logiqa_cot": {
69
+ "task": "blanditiis-eligendi-6900_logiqa_cot",
70
+ "group": "logikon-bench",
71
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
72
+ "dataset_kwargs": {
73
+ "data_files": {
74
+ "test": "data/meta-llama/Meta-Llama-3.1-70B-Instruct/blanditiis-eligendi-6900-logiqa.parquet"
75
+ }
76
+ },
77
+ "test_split": "test",
78
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
79
+ "doc_to_target": "{{answer}}",
80
+ "doc_to_choice": "{{options}}",
81
+ "description": "",
82
+ "target_delimiter": " ",
83
+ "fewshot_delimiter": "\n\n",
84
+ "num_fewshot": 0,
85
+ "metric_list": [
86
+ {
87
+ "metric": "acc",
88
+ "aggregation": "mean",
89
+ "higher_is_better": true
90
+ }
91
+ ],
92
+ "output_type": "multiple_choice",
93
+ "repeats": 1,
94
+ "should_decontaminate": false,
95
+ "metadata": {
96
+ "version": 0.0
97
+ }
98
+ },
99
+ "blanditiis-eligendi-6900_lsat-ar_cot": {
100
+ "task": "blanditiis-eligendi-6900_lsat-ar_cot",
101
+ "group": "logikon-bench",
102
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
103
+ "dataset_kwargs": {
104
+ "data_files": {
105
+ "test": "data/meta-llama/Meta-Llama-3.1-70B-Instruct/blanditiis-eligendi-6900-lsat-ar.parquet"
106
+ }
107
+ },
108
+ "test_split": "test",
109
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
110
+ "doc_to_target": "{{answer}}",
111
+ "doc_to_choice": "{{options}}",
112
+ "description": "",
113
+ "target_delimiter": " ",
114
+ "fewshot_delimiter": "\n\n",
115
+ "num_fewshot": 0,
116
+ "metric_list": [
117
+ {
118
+ "metric": "acc",
119
+ "aggregation": "mean",
120
+ "higher_is_better": true
121
+ }
122
+ ],
123
+ "output_type": "multiple_choice",
124
+ "repeats": 1,
125
+ "should_decontaminate": false,
126
+ "metadata": {
127
+ "version": 0.0
128
+ }
129
+ },
130
+ "blanditiis-eligendi-6900_lsat-lr_cot": {
131
+ "task": "blanditiis-eligendi-6900_lsat-lr_cot",
132
+ "group": "logikon-bench",
133
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
134
+ "dataset_kwargs": {
135
+ "data_files": {
136
+ "test": "data/meta-llama/Meta-Llama-3.1-70B-Instruct/blanditiis-eligendi-6900-lsat-lr.parquet"
137
+ }
138
+ },
139
+ "test_split": "test",
140
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
141
+ "doc_to_target": "{{answer}}",
142
+ "doc_to_choice": "{{options}}",
143
+ "description": "",
144
+ "target_delimiter": " ",
145
+ "fewshot_delimiter": "\n\n",
146
+ "num_fewshot": 0,
147
+ "metric_list": [
148
+ {
149
+ "metric": "acc",
150
+ "aggregation": "mean",
151
+ "higher_is_better": true
152
+ }
153
+ ],
154
+ "output_type": "multiple_choice",
155
+ "repeats": 1,
156
+ "should_decontaminate": false,
157
+ "metadata": {
158
+ "version": 0.0
159
+ }
160
+ },
161
+ "blanditiis-eligendi-6900_lsat-rc_cot": {
162
+ "task": "blanditiis-eligendi-6900_lsat-rc_cot",
163
+ "group": "logikon-bench",
164
+ "dataset_path": "cot-leaderboard/cot-eval-traces-2.0",
165
+ "dataset_kwargs": {
166
+ "data_files": {
167
+ "test": "data/meta-llama/Meta-Llama-3.1-70B-Instruct/blanditiis-eligendi-6900-lsat-rc.parquet"
168
+ }
169
+ },
170
+ "test_split": "test",
171
+ "doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n",
172
+ "doc_to_target": "{{answer}}",
173
+ "doc_to_choice": "{{options}}",
174
+ "description": "",
175
+ "target_delimiter": " ",
176
+ "fewshot_delimiter": "\n\n",
177
+ "num_fewshot": 0,
178
+ "metric_list": [
179
+ {
180
+ "metric": "acc",
181
+ "aggregation": "mean",
182
+ "higher_is_better": true
183
+ }
184
+ ],
185
+ "output_type": "multiple_choice",
186
+ "repeats": 1,
187
+ "should_decontaminate": false,
188
+ "metadata": {
189
+ "version": 0.0
190
+ }
191
+ }
192
+ },
193
+ "versions": {
194
+ "blanditiis-eligendi-6900_logiqa2_cot": 0.0,
195
+ "blanditiis-eligendi-6900_logiqa_cot": 0.0,
196
+ "blanditiis-eligendi-6900_lsat-ar_cot": 0.0,
197
+ "blanditiis-eligendi-6900_lsat-lr_cot": 0.0,
198
+ "blanditiis-eligendi-6900_lsat-rc_cot": 0.0
199
+ },
200
+ "n-shot": {
201
+ "blanditiis-eligendi-6900_logiqa2_cot": 0,
202
+ "blanditiis-eligendi-6900_logiqa_cot": 0,
203
+ "blanditiis-eligendi-6900_lsat-ar_cot": 0,
204
+ "blanditiis-eligendi-6900_lsat-lr_cot": 0,
205
+ "blanditiis-eligendi-6900_lsat-rc_cot": 0
206
+ },
207
+ "higher_is_better": {
208
+ "blanditiis-eligendi-6900_logiqa2_cot": {
209
+ "acc": true
210
+ },
211
+ "blanditiis-eligendi-6900_logiqa_cot": {
212
+ "acc": true
213
+ },
214
+ "blanditiis-eligendi-6900_lsat-ar_cot": {
215
+ "acc": true
216
+ },
217
+ "blanditiis-eligendi-6900_lsat-lr_cot": {
218
+ "acc": true
219
+ },
220
+ "blanditiis-eligendi-6900_lsat-rc_cot": {
221
+ "acc": true
222
+ }
223
+ },
224
+ "n-samples": {
225
+ "blanditiis-eligendi-6900_lsat-rc_cot": {
226
+ "original": 269,
227
+ "effective": 269
228
+ },
229
+ "blanditiis-eligendi-6900_lsat-lr_cot": {
230
+ "original": 510,
231
+ "effective": 510
232
+ },
233
+ "blanditiis-eligendi-6900_lsat-ar_cot": {
234
+ "original": 230,
235
+ "effective": 230
236
+ },
237
+ "blanditiis-eligendi-6900_logiqa_cot": {
238
+ "original": 626,
239
+ "effective": 626
240
+ },
241
+ "blanditiis-eligendi-6900_logiqa2_cot": {
242
+ "original": 1572,
243
+ "effective": 1572
244
+ }
245
+ },
246
+ "config": {
247
+ "model": "vllm",
248
+ "model_args": "pretrained=meta-llama/Meta-Llama-3.1-70B-Instruct,revision=main,dtype=bfloat16,tensor_parallel_size=8,gpu_memory_utilization=0.7,trust_remote_code=true,max_length=2048",
249
+ "batch_size": "auto",
250
+ "batch_sizes": [],
251
+ "device": null,
252
+ "use_cache": null,
253
+ "limit": null,
254
+ "bootstrap_iters": 100000,
255
+ "gen_kwargs": null,
256
+ "random_seed": 0,
257
+ "numpy_seed": 1234,
258
+ "torch_seed": 1234,
259
+ "fewshot_seed": 1234
260
+ },
261
+ "git_hash": "4d6d2d8",
262
+ "date": 1725906101.2327492,
263
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.2\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-4.18.0-477.51.1.el8_8.x86_64-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.4.131\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-40GB\nGPU 1: NVIDIA A100-SXM4-40GB\nGPU 2: NVIDIA A100-SXM4-40GB\nGPU 3: NVIDIA A100-SXM4-40GB\nGPU 4: NVIDIA A100-SXM4-40GB\nGPU 5: NVIDIA A100-SXM4-40GB\nGPU 6: NVIDIA A100-SXM4-40GB\nGPU 7: NVIDIA A100-SXM4-40GB\n\nNvidia driver version: 550.54.15\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0\n/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7742 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 2250.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4491.74\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (32 instances)\nNUMA node(s): 8\nNUMA node0 CPU(s): 0-15,128-143\nNUMA node1 CPU(s): 16-31,144-159\nNUMA node2 CPU(s): 32-47,160-175\nNUMA node3 CPU(s): 48-63,176-191\nNUMA node4 CPU(s): 64-79,192-207\nNUMA node5 CPU(s): 80-95,208-223\nNUMA node6 CPU(s): 96-111,224-239\nNUMA node7 CPU(s): 112-127,240-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] flashinfer==0.1.3+cu121torch2.3\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.24.4\n[pip3] onnx==1.16.0\n[pip3] optree==0.11.0\n[pip3] pytorch-quantization==2.1.2\n[pip3] pytorch-triton==3.0.0+989adb9a2\n[pip3] torch==2.3.1\n[pip3] torch-tensorrt==2.4.0a0\n[pip3] torchvision==0.18.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
264
+ "transformers_version": "4.43.3",
265
+ "upper_git_hash": null,
266
+ "tokenizer_pad_token": [
267
+ "<|eot_id|>",
268
+ 128009
269
+ ],
270
+ "tokenizer_eos_token": [
271
+ "<|eot_id|>",
272
+ 128009
273
+ ],
274
+ "tokenizer_bos_token": [
275
+ "<|begin_of_text|>",
276
+ 128000
277
+ ],
278
+ "eot_token_id": 128009,
279
+ "max_length": 2048,
280
+ "task_hashes": {},
281
+ "model_source": "vllm",
282
+ "model_name": "meta-llama/Meta-Llama-3.1-70B-Instruct",
283
+ "model_name_sanitized": "meta-llama__Meta-Llama-3.1-70B-Instruct",
284
+ "system_instruction": null,
285
+ "system_instruction_sha": null,
286
+ "fewshot_as_multiturn": false,
287
+ "chat_template": null,
288
+ "chat_template_sha": null,
289
+ "start_time": 7713417.050750899,
290
+ "end_time": 7714937.062663987,
291
+ "total_evaluation_time_seconds": "1520.0119130881503"
292
+ }