Upload results for model Locutusque/Hercules-4.0-Mistral-v0.2-7B
#178
by
ggbetz
- opened
data/Locutusque/Hercules-4.0-Mistral-v0.2-7B/base/24-04-08-10:47:24.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"voluptatem-ad-8562_logiqa2_base": {
|
4 |
+
"acc,none": 0.31679389312977096,
|
5 |
+
"acc_stderr,none": 0.011737515474466387,
|
6 |
+
"alias": "voluptatem-ad-8562_logiqa2_base"
|
7 |
+
},
|
8 |
+
"voluptatem-ad-8562_logiqa_base": {
|
9 |
+
"acc,none": 0.29233226837060705,
|
10 |
+
"acc_stderr,none": 0.018193366406024092,
|
11 |
+
"alias": "voluptatem-ad-8562_logiqa_base"
|
12 |
+
},
|
13 |
+
"voluptatem-ad-8562_lsat-ar_base": {
|
14 |
+
"acc,none": 0.20869565217391303,
|
15 |
+
"acc_stderr,none": 0.02685410826543968,
|
16 |
+
"alias": "voluptatem-ad-8562_lsat-ar_base"
|
17 |
+
},
|
18 |
+
"voluptatem-ad-8562_lsat-lr_base": {
|
19 |
+
"acc,none": 0.20784313725490197,
|
20 |
+
"acc_stderr,none": 0.017985170028791075,
|
21 |
+
"alias": "voluptatem-ad-8562_lsat-lr_base"
|
22 |
+
},
|
23 |
+
"voluptatem-ad-8562_lsat-rc_base": {
|
24 |
+
"acc,none": 0.3048327137546468,
|
25 |
+
"acc_stderr,none": 0.028119529675613444,
|
26 |
+
"alias": "voluptatem-ad-8562_lsat-rc_base"
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"configs": {
|
30 |
+
"voluptatem-ad-8562_logiqa2_base": {
|
31 |
+
"task": "voluptatem-ad-8562_logiqa2_base",
|
32 |
+
"group": "logikon-bench",
|
33 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
34 |
+
"dataset_kwargs": {
|
35 |
+
"data_files": {
|
36 |
+
"test": "voluptatem-ad-8562-logiqa2/test-00000-of-00001.parquet"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"test_split": "test",
|
40 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
41 |
+
"doc_to_target": "{{answer}}",
|
42 |
+
"doc_to_choice": "{{options}}",
|
43 |
+
"description": "",
|
44 |
+
"target_delimiter": " ",
|
45 |
+
"fewshot_delimiter": "\n\n",
|
46 |
+
"num_fewshot": 0,
|
47 |
+
"metric_list": [
|
48 |
+
{
|
49 |
+
"metric": "acc",
|
50 |
+
"aggregation": "mean",
|
51 |
+
"higher_is_better": true
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"output_type": "multiple_choice",
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 0.0
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"voluptatem-ad-8562_logiqa_base": {
|
62 |
+
"task": "voluptatem-ad-8562_logiqa_base",
|
63 |
+
"group": "logikon-bench",
|
64 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
65 |
+
"dataset_kwargs": {
|
66 |
+
"data_files": {
|
67 |
+
"test": "voluptatem-ad-8562-logiqa/test-00000-of-00001.parquet"
|
68 |
+
}
|
69 |
+
},
|
70 |
+
"test_split": "test",
|
71 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
72 |
+
"doc_to_target": "{{answer}}",
|
73 |
+
"doc_to_choice": "{{options}}",
|
74 |
+
"description": "",
|
75 |
+
"target_delimiter": " ",
|
76 |
+
"fewshot_delimiter": "\n\n",
|
77 |
+
"num_fewshot": 0,
|
78 |
+
"metric_list": [
|
79 |
+
{
|
80 |
+
"metric": "acc",
|
81 |
+
"aggregation": "mean",
|
82 |
+
"higher_is_better": true
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"output_type": "multiple_choice",
|
86 |
+
"repeats": 1,
|
87 |
+
"should_decontaminate": false,
|
88 |
+
"metadata": {
|
89 |
+
"version": 0.0
|
90 |
+
}
|
91 |
+
},
|
92 |
+
"voluptatem-ad-8562_lsat-ar_base": {
|
93 |
+
"task": "voluptatem-ad-8562_lsat-ar_base",
|
94 |
+
"group": "logikon-bench",
|
95 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
96 |
+
"dataset_kwargs": {
|
97 |
+
"data_files": {
|
98 |
+
"test": "voluptatem-ad-8562-lsat-ar/test-00000-of-00001.parquet"
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"test_split": "test",
|
102 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
103 |
+
"doc_to_target": "{{answer}}",
|
104 |
+
"doc_to_choice": "{{options}}",
|
105 |
+
"description": "",
|
106 |
+
"target_delimiter": " ",
|
107 |
+
"fewshot_delimiter": "\n\n",
|
108 |
+
"num_fewshot": 0,
|
109 |
+
"metric_list": [
|
110 |
+
{
|
111 |
+
"metric": "acc",
|
112 |
+
"aggregation": "mean",
|
113 |
+
"higher_is_better": true
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"output_type": "multiple_choice",
|
117 |
+
"repeats": 1,
|
118 |
+
"should_decontaminate": false,
|
119 |
+
"metadata": {
|
120 |
+
"version": 0.0
|
121 |
+
}
|
122 |
+
},
|
123 |
+
"voluptatem-ad-8562_lsat-lr_base": {
|
124 |
+
"task": "voluptatem-ad-8562_lsat-lr_base",
|
125 |
+
"group": "logikon-bench",
|
126 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
127 |
+
"dataset_kwargs": {
|
128 |
+
"data_files": {
|
129 |
+
"test": "voluptatem-ad-8562-lsat-lr/test-00000-of-00001.parquet"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"test_split": "test",
|
133 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
134 |
+
"doc_to_target": "{{answer}}",
|
135 |
+
"doc_to_choice": "{{options}}",
|
136 |
+
"description": "",
|
137 |
+
"target_delimiter": " ",
|
138 |
+
"fewshot_delimiter": "\n\n",
|
139 |
+
"num_fewshot": 0,
|
140 |
+
"metric_list": [
|
141 |
+
{
|
142 |
+
"metric": "acc",
|
143 |
+
"aggregation": "mean",
|
144 |
+
"higher_is_better": true
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"output_type": "multiple_choice",
|
148 |
+
"repeats": 1,
|
149 |
+
"should_decontaminate": false,
|
150 |
+
"metadata": {
|
151 |
+
"version": 0.0
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"voluptatem-ad-8562_lsat-rc_base": {
|
155 |
+
"task": "voluptatem-ad-8562_lsat-rc_base",
|
156 |
+
"group": "logikon-bench",
|
157 |
+
"dataset_path": "cot-leaderboard/cot-eval-traces",
|
158 |
+
"dataset_kwargs": {
|
159 |
+
"data_files": {
|
160 |
+
"test": "voluptatem-ad-8562-lsat-rc/test-00000-of-00001.parquet"
|
161 |
+
}
|
162 |
+
},
|
163 |
+
"test_split": "test",
|
164 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
165 |
+
"doc_to_target": "{{answer}}",
|
166 |
+
"doc_to_choice": "{{options}}",
|
167 |
+
"description": "",
|
168 |
+
"target_delimiter": " ",
|
169 |
+
"fewshot_delimiter": "\n\n",
|
170 |
+
"num_fewshot": 0,
|
171 |
+
"metric_list": [
|
172 |
+
{
|
173 |
+
"metric": "acc",
|
174 |
+
"aggregation": "mean",
|
175 |
+
"higher_is_better": true
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"output_type": "multiple_choice",
|
179 |
+
"repeats": 1,
|
180 |
+
"should_decontaminate": false,
|
181 |
+
"metadata": {
|
182 |
+
"version": 0.0
|
183 |
+
}
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"versions": {
|
187 |
+
"voluptatem-ad-8562_logiqa2_base": 0.0,
|
188 |
+
"voluptatem-ad-8562_logiqa_base": 0.0,
|
189 |
+
"voluptatem-ad-8562_lsat-ar_base": 0.0,
|
190 |
+
"voluptatem-ad-8562_lsat-lr_base": 0.0,
|
191 |
+
"voluptatem-ad-8562_lsat-rc_base": 0.0
|
192 |
+
},
|
193 |
+
"n-shot": {
|
194 |
+
"voluptatem-ad-8562_logiqa2_base": 0,
|
195 |
+
"voluptatem-ad-8562_logiqa_base": 0,
|
196 |
+
"voluptatem-ad-8562_lsat-ar_base": 0,
|
197 |
+
"voluptatem-ad-8562_lsat-lr_base": 0,
|
198 |
+
"voluptatem-ad-8562_lsat-rc_base": 0
|
199 |
+
},
|
200 |
+
"config": {
|
201 |
+
"model": "vllm",
|
202 |
+
"model_args": "pretrained=Locutusque/Hercules-4.0-Mistral-v0.2-7B,revision=main,dtype=bfloat16,tensor_parallel_size=1,gpu_memory_utilization=0.8,trust_remote_code=true,max_length=2048",
|
203 |
+
"batch_size": "auto",
|
204 |
+
"batch_sizes": [],
|
205 |
+
"device": null,
|
206 |
+
"use_cache": null,
|
207 |
+
"limit": null,
|
208 |
+
"bootstrap_iters": 100000,
|
209 |
+
"gen_kwargs": null
|
210 |
+
},
|
211 |
+
"git_hash": "741db1c"
|
212 |
+
}
|