File size: 9,910 Bytes
a006ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c51b5d
 
 
a006ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba40b35
a006ebf
 
 
 
 
 
 
 
 
 
 
 
 
dd12582
9c51b5d
a006ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Shrinked Turkish NER """


import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
"""

_DESCRIPTION = """\
Shrinked version (48 entity type) of the turkish_ner.

Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.

Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle
"""

_HOMEPAGE = "https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar"

_LICENSE = "Attribution 4.0 International (CC BY 4.0)"

_FILENAME = "train.txt"


class TurkishShrinkedNER(datasets.GeneratorBasedBuilder):
    @property
    def manual_download_instructions(self):
        return """\
    You need to go to https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar,
    and manually download the turkish_shrinked_ner. Once it is completed,
    a file named archive.zip will be appeared in your Downloads folder
    or whichever folder your browser chooses to save files to. You then have
    to unzip the file and move train.txt under <path/to/folder>.
    The <path/to/folder> can e.g. be "~/manual_data".
    turkish_shrinked_ner can then be loaded using the following command `datasets.load_dataset("turkish_shrinked_ner", data_dir="<path/to/folder>")`.
    """

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-academic",
                                "I-academic",
                                "B-academic_person",
                                "I-academic_person",
                                "B-aircraft",
                                "I-aircraft",
                                "B-album_person",
                                "I-album_person",
                                "B-anatomy",
                                "I-anatomy",
                                "B-animal",
                                "I-animal",
                                "B-architect_person",
                                "I-architect_person",
                                "B-capital",
                                "I-capital",
                                "B-chemical",
                                "I-chemical",
                                "B-clothes",
                                "I-clothes",
                                "B-country",
                                "I-country",
                                "B-culture",
                                "I-culture",
                                "B-currency",
                                "I-currency",
                                "B-date",
                                "I-date",
                                "B-food",
                                "I-food",
                                "B-genre",
                                "I-genre",
                                "B-government",
                                "I-government",
                                "B-government_person",
                                "I-government_person",
                                "B-language",
                                "I-language",
                                "B-location",
                                "I-location",
                                "B-material",
                                "I-material",
                                "B-measure",
                                "I-measure",
                                "B-medical",
                                "I-medical",
                                "B-military",
                                "I-military",
                                "B-military_person",
                                "I-military_person",
                                "B-nation",
                                "I-nation",
                                "B-newspaper",
                                "I-newspaper",
                                "B-organization",
                                "I-organization",
                                "B-organization_person",
                                "I-organization_person",
                                "B-person",
                                "I-person",
                                "B-production_art_music",
                                "I-production_art_music",
                                "B-production_art_music_person",
                                "I-production_art_music_person",
                                "B-quantity",
                                "I-quantity",
                                "B-religion",
                                "I-religion",
                                "B-science",
                                "I-science",
                                "B-shape",
                                "I-shape",
                                "B-ship",
                                "I-ship",
                                "B-software",
                                "I-software",
                                "B-space",
                                "I-space",
                                "B-space_person",
                                "I-space_person",
                                "B-sport",
                                "I-sport",
                                "B-sport_name",
                                "I-sport_name",
                                "B-sport_person",
                                "I-sport_person",
                                "B-structure",
                                "I-structure",
                                "B-subject",
                                "I-subject",
                                "B-tech",
                                "I-tech",
                                "B-train",
                                "I-train",
                                "B-vehicle",
                                "I-vehicle",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
        if not os.path.exists(path_to_manual_file):
            raise FileNotFoundError(
                "{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('turkish_shrinked_ner', data_dir=...)` that includes file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions}"
            )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(path_to_manual_file, "train.txt"),
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""
        logger.info("⏳ Generating examples from = %s", filepath)

        with open(filepath, encoding="utf-8") as f:
            id_ = 0
            tokens = []
            ner_tags = []
            for row in f:
                if row == "":
                    continue
                elif row == "\n":
                    yield id_, {
                        "id": str(id_),
                        "tokens": tokens,
                        "ner_tags": ner_tags,
                    }
                    tokens = []
                    ner_tags = []
                    id_ += 1
                else:
                    token, tag = row.split(" ")
                    tokens.append(token)
                    ner_tags.append(tag)

            if len(tokens) > 0:
                yield id_, {
                    "id": str(id_),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }