Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Turkish
Size:
100K<n<1M
License:
File size: 9,910 Bytes
a006ebf 9c51b5d a006ebf ba40b35 a006ebf dd12582 9c51b5d a006ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Shrinked Turkish NER """
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
"""
_DESCRIPTION = """\
Shrinked version (48 entity type) of the turkish_ner.
Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains.
Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle
"""
_HOMEPAGE = "https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar"
_LICENSE = "Attribution 4.0 International (CC BY 4.0)"
_FILENAME = "train.txt"
class TurkishShrinkedNER(datasets.GeneratorBasedBuilder):
@property
def manual_download_instructions(self):
return """\
You need to go to https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar,
and manually download the turkish_shrinked_ner. Once it is completed,
a file named archive.zip will be appeared in your Downloads folder
or whichever folder your browser chooses to save files to. You then have
to unzip the file and move train.txt under <path/to/folder>.
The <path/to/folder> can e.g. be "~/manual_data".
turkish_shrinked_ner can then be loaded using the following command `datasets.load_dataset("turkish_shrinked_ner", data_dir="<path/to/folder>")`.
"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-academic",
"I-academic",
"B-academic_person",
"I-academic_person",
"B-aircraft",
"I-aircraft",
"B-album_person",
"I-album_person",
"B-anatomy",
"I-anatomy",
"B-animal",
"I-animal",
"B-architect_person",
"I-architect_person",
"B-capital",
"I-capital",
"B-chemical",
"I-chemical",
"B-clothes",
"I-clothes",
"B-country",
"I-country",
"B-culture",
"I-culture",
"B-currency",
"I-currency",
"B-date",
"I-date",
"B-food",
"I-food",
"B-genre",
"I-genre",
"B-government",
"I-government",
"B-government_person",
"I-government_person",
"B-language",
"I-language",
"B-location",
"I-location",
"B-material",
"I-material",
"B-measure",
"I-measure",
"B-medical",
"I-medical",
"B-military",
"I-military",
"B-military_person",
"I-military_person",
"B-nation",
"I-nation",
"B-newspaper",
"I-newspaper",
"B-organization",
"I-organization",
"B-organization_person",
"I-organization_person",
"B-person",
"I-person",
"B-production_art_music",
"I-production_art_music",
"B-production_art_music_person",
"I-production_art_music_person",
"B-quantity",
"I-quantity",
"B-religion",
"I-religion",
"B-science",
"I-science",
"B-shape",
"I-shape",
"B-ship",
"I-ship",
"B-software",
"I-software",
"B-space",
"I-space",
"B-space_person",
"I-space_person",
"B-sport",
"I-sport",
"B-sport_name",
"I-sport_name",
"B-sport_person",
"I-sport_person",
"B-structure",
"I-structure",
"B-subject",
"I-subject",
"B-tech",
"I-tech",
"B-train",
"I-train",
"B-vehicle",
"I-vehicle",
]
)
),
}
),
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(path_to_manual_file):
raise FileNotFoundError(
"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('turkish_shrinked_ner', data_dir=...)` that includes file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(path_to_manual_file, "train.txt"),
"split": "train",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
id_ = 0
tokens = []
ner_tags = []
for row in f:
if row == "":
continue
elif row == "\n":
yield id_, {
"id": str(id_),
"tokens": tokens,
"ner_tags": ner_tags,
}
tokens = []
ner_tags = []
id_ += 1
else:
token, tag = row.split(" ")
tokens.append(token)
ner_tags.append(tag)
if len(tokens) > 0:
yield id_, {
"id": str(id_),
"tokens": tokens,
"ner_tags": ner_tags,
}
|