Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Swedish
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish""" | |
import re | |
import datasets | |
_CITATION = """\ | |
@inproceedings{almgrenpavlovmogren2016bioner, | |
title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs}, | |
author={Simon Almgren, Sean Pavlov, Olof Mogren}, | |
booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)}, | |
pages={1}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish. | |
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden. | |
""" | |
_LICENSE = """\ | |
Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) | |
See http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license. | |
""" | |
_URL = "https://github.com/olofmogren/biomedical-ner-data-swedish" | |
_DATA_URL = "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/" | |
class SwedishMedicalNerConfig(datasets.BuilderConfig): | |
"""BuilderConfig for SwedMedNER""" | |
def __init__(self, **kwargs): | |
""" | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(SwedishMedicalNerConfig, self).__init__(**kwargs) | |
class SwedishMedicalNer(datasets.GeneratorBasedBuilder): | |
"""SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="wiki", version=VERSION, description="The Swedish Wikipedia part of the dataset"), | |
datasets.BuilderConfig(name="lt", version=VERSION, description="The Läkartidningen part of the dataset"), | |
datasets.BuilderConfig(name="1177", version=VERSION, description="The 1177 Vårdguiden part of the dataset"), | |
] | |
def _info(self): | |
if self.config.name == "wiki": | |
features = datasets.Features( | |
{ | |
"sid": datasets.Value("string"), | |
"sentence": datasets.Value("string"), | |
"entities": datasets.Sequence( | |
{ | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"text": datasets.Value("string"), | |
"type": datasets.ClassLabel( | |
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"] | |
), | |
} | |
), | |
} | |
) | |
elif self.config.name == "lt": | |
features = datasets.Features( | |
{ | |
"sid": datasets.Value("string"), | |
"sentence": datasets.Value("string"), | |
"entities": datasets.Sequence( | |
{ | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"text": datasets.Value("string"), | |
"type": datasets.ClassLabel( | |
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"] | |
), | |
} | |
), | |
} | |
) | |
elif self.config.name == "1177": | |
features = datasets.Features( | |
{ | |
"sid": datasets.Value("string"), | |
"sentence": datasets.Value("string"), | |
"entities": datasets.Sequence( | |
{ | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"text": datasets.Value("string"), | |
"type": datasets.ClassLabel( | |
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"] | |
), | |
} | |
), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_URL, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"wiki": _DATA_URL + "Wiki_annotated_60.txt", | |
"lt": _DATA_URL + "LT_annotated_60.txt", | |
"1177": _DATA_URL + "1177_annotated_sentences.txt", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
if self.config.name == "wiki": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["wiki"]}) | |
] | |
elif self.config.name == "lt": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["lt"]}) | |
] | |
elif self.config.name == "1177": | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["1177"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples as (key, example) tuples.""" | |
def find_type(s, e): | |
if (s == "(") and (e == ")"): | |
return "Disorder and Finding" | |
elif (s == "[") and (e == "]"): | |
return "Pharmaceutical Drug" | |
elif (s == "{") and (e == "}"): | |
return "Body Structure" | |
pattern = r"\[([^\[\]()]+)\]|\(([^\[\]()]+)\)|\{([^\[\]()]+)\}" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
sentence = row.replace("\n", "") | |
if self.config.name == "1177": | |
targets = [ | |
{ | |
"start": m.start(0), | |
"end": m.end(0), | |
"text": sentence[m.start(0) + 2 : m.end(0) - 2], | |
"type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]), | |
} | |
for m in re.finditer(pattern, sentence) | |
] | |
yield id_, { | |
"sid": self.config.name + "_" + str(id_), | |
"sentence": sentence, | |
"entities": targets if targets else [], | |
} | |
else: | |
targets = [ | |
{ | |
"start": m.start(0), | |
"end": m.end(0), | |
"text": sentence[m.start(0) + 1 : m.end(0) - 1], | |
"type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]), | |
} | |
for m in re.finditer(pattern, sentence) | |
] | |
yield id_, { | |
"sid": self.config.name + "_" + str(id_), | |
"sentence": sentence, | |
"entities": targets if targets else [], | |
} | |