File size: 4,746 Bytes
ed91090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a7fbf
 
 
ed91090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6a7fbf
ed91090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity annotated data from the NCHLT Text Resource Development: Phase II Project for Sepedi"""


import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{sepedi_ner,
  author    = {D.J. Prinsloo and
              Roald Eiselen},
  title     = {NCHLT Sepedi Named Entity Annotated Corpus},
  booktitle = {Eiselen, R. 2016. Government domain named entity recognition for South African languages. Proceedings of the 10th      Language Resource and Evaluation Conference, Portorož, Slovenia.},
  year      = {2016},
  url       = {https://repo.sadilar.org/handle/20.500.12185/328},
}
"""

_DESCRIPTION = """\
Named entity annotated data from the NCHLT Text Resource Development: Phase II Project, annotated with PERSON, LOCATION, ORGANISATION and MISCELLANEOUS tags.
"""

_URL = "https://repo.sadilar.org/bitstream/handle/20.500.12185/328/nchlt_sepedi_named_entity_annotated_corpus.zip?sequence=3&isAllowed=y"

_EXTRACTED_FILE = "NCHLT Sepedi Named Entity Annotated Corpus/Dataset.NCHLT-II.NSO.NER.Full.txt"

_HOMEPAGE = "https://repo.sadilar.org/handle/20.500.12185/328"

_LICENCE = "Creative Commons Attribution 2.5 South Africa License"


class SepediNerConfig(datasets.BuilderConfig):
    """BuilderConfig for SepediNer"""

    def __init__(self, **kwargs):
        """BuilderConfig for SepediNer.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SepediNerConfig, self).__init__(**kwargs)


class SepediNer(datasets.GeneratorBasedBuilder):
    """ Sepedi Ner dataset"""

    BUILDER_CONFIGS = [
        SepediNerConfig(
            name="sepedi_ner",
            version=datasets.Version("1.0.0"),
            description="SepediNer dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "OUT",
                                "B-PERS",
                                "I-PERS",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENCE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir, _EXTRACTED_FILE)},
            ),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line.split("\t")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }