File size: 6,070 Bytes
a150770 bad146a a150770 6b6d3ab a150770 0814f9c a150770 0814f9c a150770 0814f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SentiWS: German-language resource for sentiment analysis, pos-tagging"""
import os
import datasets
_CITATION = """\
@INPROCEEDINGS{remquahey2010,
title = {SentiWS -- a Publicly Available German-language Resource for Sentiment Analysis},
booktitle = {Proceedings of the 7th International Language Resources and Evaluation (LREC'10)},
author = {Remus, R. and Quasthoff, U. and Heyer, G.},
year = {2010}
}
"""
_DESCRIPTION = """\
SentimentWortschatz, or SentiWS for short, is a publicly available German-language resource for sentiment analysis, and pos-tagging. The POS tags are ["NN", "VVINF", "ADJX", "ADV"] -> ["noun", "verb", "adjective", "adverb"], and positive and negative polarity bearing words are weighted within the interval of [-1, 1].
"""
_HOMEPAGE = ""
_LICENSE = "Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License"
_URLs = ["https://downloads.wortschatz-leipzig.de/etc/SentiWS/SentiWS_v2.0.zip"]
class SentiWS(datasets.GeneratorBasedBuilder):
"""SentiWS: German-language resource for sentiment analysis, pos-tagging"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="pos-tagging", version=VERSION, description="This covers pos-tagging task"),
datasets.BuilderConfig(
name="sentiment-scoring",
version=VERSION,
description="This covers the sentiment-scoring in [-1, 1] corresponding to (negative, positive) sentiment",
),
]
DEFAULT_CONFIG_NAME = "pos-tagging"
def _info(self):
if (
self.config.name == "pos-tagging"
): # the pos-tags are ["NN", "VVINF", "ADJX", "ADV"] -> ["noun", "verb", "adjective", "adverb"]
features = datasets.Features(
{
"word": datasets.Value("string"),
"pos-tag": datasets.ClassLabel(names=["NN", "VVINF", "ADJX", "ADV"]),
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"word": datasets.Value("string"),
"sentiment-score": datasets.Value("float32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
my_urls = _URLs
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"sourcefiles": [
os.path.join(data_dir[0], f)
for f in ["SentiWS_v2.0_Positive.txt", "SentiWS_v2.0_Negative.txt"]
],
"split": "train",
},
),
]
def _generate_examples(self, sourcefiles, split):
"""Yields examples."""
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
for file_idx, filepath in enumerate(sourcefiles):
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
word = row.split("|")[0]
if self.config.name == "pos-tagging":
tag = row.split("|")[1].split("\t")[0]
yield f"{file_idx}_{id_}", {"word": word, "pos-tag": tag}
else:
sentiscore = row.split("|")[1].split("\t")[1]
yield f"{file_idx}_{id_}", {"word": word, "sentiment-score": float(sentiscore)}
|