Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Romanian
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,038 Bytes
2b86e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Introduction in RONEC: Named Entity Corpus for ROmanian language"""

from __future__ import absolute_import, division, print_function

import logging

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{dumitrescu2019introducing,
  title={Introducing RONEC--the Romanian Named Entity Corpus},
  author={Dumitrescu, Stefan Daniel and Avram, Andrei-Marius},
  journal={arXiv preprint arXiv:1909.01247},
  year={2019}
}
"""

# You can copy an official description
_DESCRIPTION = """\
The RONEC (Named Entity Corpus for the Romanian language) dataset  contains over 26000 entities in ~5000 annotated sentence,
belonging to 16 distinct classes. It represents the first initiative in the Romanian language space specifically targeted for named entity recognition
"""

_HOMEPAGE = "https://github.com/dumitrescustefan/ronec"

_LICENSE = "MIT License"

# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://raw.githubusercontent.com/dumitrescustefan/ronec/master/ronec/conllup/raw/"
_TRAINING_FILE = "train.conllu"
_TEST_FILE = "test.conllu"
_DEV_FILE = "dev.conllu"


class RONECConfig(datasets.BuilderConfig):
    """BuilderConfig for RONEC dataset"""

    def __init__(self, **kwargs):
        super(RONECConfig, self).__init__(**kwargs)


class RONEC(datasets.GeneratorBasedBuilder):
    """RONEC dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        RONECConfig(name="ronec", version=VERSION, description="RONEC dataset"),
    ]

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=[
                            "O",
                            "B-DATETIME",
                            "B-EVENT",
                            "B-FACILITY",
                            "B-GPE",
                            "B-LANGUAGE",
                            "B-LOC",
                            "B-MONEY",
                            "B-NAT_REL_POL",
                            "B-NUMERIC_VALUE",
                            "B-ORDINAL",
                            "B-ORGANIZATION",
                            "B-PERIOD",
                            "B-PERSON",
                            "B-PRODUCT",
                            "B-QUANTITY",
                            "B-WORK_OF_ART",
                            "I-DATETIME",
                            "I-EVENT",
                            "I-FACILITY",
                            "I-GPE",
                            "I-LANGUAGE",
                            "I-LOC",
                            "I-MONEY",
                            "I-NAT_REL_POL",
                            "I-NUMERIC_VALUE",
                            "I-ORDINAL",
                            "I-ORGANIZATION",
                            "I-PERIOD",
                            "I-PERSON",
                            "I-PRODUCT",
                            "I-QUANTITY",
                            "I-WORK_OF_ART",
                        ]
                    )
                ),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        urls_to_download = {"train": _URL + _TRAINING_FILE, "dev": _URL + _DEV_FILE, "test": _URL + _TEST_FILE}

        downloaded_files = dl_manager.download(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": downloaded_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": downloaded_files["test"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": downloaded_files["dev"]},
            ),
        ]

    def _generate_examples(self, filepath):
        """ Yields examples. """

        logging.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if "#" in line or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # ronec tokens are tab separated
                    splits = line.split("\t")
                    tokens.append(splits[1])
                    ner_tags.append(splits[10].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }