Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Size:
1K - 10K
License:
File size: 12,649 Bytes
4cb7603 a574b28 4cb7603 a574b28 4cb7603 a574b28 4cb7603 ac85087 4cb7603 a574b28 4cb7603 7d88528 4cb7603 7d88528 4cb7603 7d88528 4cb7603 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""QA4MRE (CLEF 2011/2012/2013): a reading comprehension dataset."""
import xml.etree.ElementTree as ET
import datasets
logger = datasets.logging.get_logger(__name__)
# pylint: disable=anomalous-backslash-in-string
_CITATION = r"""
@InProceedings{10.1007/978-3-642-40802-1_29,
author={Pe{\~{n}}as, Anselmoband Hovy, Eduardband Forner, Pamela and Rodrigo, {\'A}lvaro and Sutcliffe, Richard
and Morante, Roser},
editor={Forner, Pamela and M{\"u}ller, Henning and Paredes, Roberto and Rosso, Paolo
and Stein, Benno},
title={QA4MRE 2011-2013: Overview of Question Answering for Machine Reading Evaluation},
booktitle={Information Access Evaluation. Multilinguality, Multimodality, and Visualization},
year={2013},
publisher={Springer Berlin Heidelberg},
address={Berlin, Heidelberg},
pages={303--320},
abstract={This paper describes the methodology for testing the performance of Machine Reading systems through Question Answering and Reading Comprehension Tests. This was the attempt of the QA4MRE challenge which was run as a Lab at CLEF 2011--2013. The traditional QA task was replaced by a new Machine Reading task, whose intention was to ask questions that required a deep knowledge of individual short texts and in which systems were required to choose one answer, by analysing the corresponding test document in conjunction with background text collections provided by the organization. Four different tasks have been organized during these years: Main Task, Processing Modality and Negation for Machine Reading, Machine Reading of Biomedical Texts about Alzheimer's disease, and Entrance Exams. This paper describes their motivation, their goals, their methodology for preparing the data sets, their background collections, their metrics used for the evaluation, and the lessons learned along these three years.},
isbn={978-3-642-40802-1}
}
"""
_DESCRIPTION = """
QA4MRE dataset was created for the CLEF 2011/2012/2013 shared tasks to promote research in
question answering and reading comprehension. The dataset contains a supporting
passage and a set of questions corresponding to the passage. Multiple options
for answers are provided for each question, of which only one is correct. The
training and test datasets are available for the main track.
Additional gold standard documents are available for two pilot studies: one on
alzheimers data, and the other on entrance exams data.
"""
_BASE_URL = "http://nlp.uned.es/clef-qa/repository/js/scripts/downloadFile.php?file=/var/www/html/nlp/clef-qa/repository/resources/QA4MRE/"
PATHS = {
"2011": {
"_TRACKS": ("main"),
"_PATH_TMPL_MAIN_GS": "2011/Training_Data/Goldstandard/QA4MRE-2011-{}_GS.xml",
"_LANGUAGES_MAIN": ("DE", "EN", "ES", "IT", "RO"),
},
"2012": {
"_TRACKS": ("main", "alzheimers"),
"_PATH_TMPL_MAIN_GS": "2012/Main_Task/Training_Data/Goldstandard/Used_in_Evaluation/QA4MRE-2012-{}_GS.xml",
"_LANGUAGES_MAIN": ("AR", "BG", "DE", "EN", "ES", "IT", "RO"),
"_PATH_ALZHEIMER": "2012/Pilot_Tasks/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2012_BIOMEDICAL_GS.xml",
},
"2013": {
"_TRACKS": ("main", "alzheimers", "entrance_exam"),
"_PATH_TMPL_MAIN_GS": "2013/Main_Task/Training_Data/Goldstandard/QA4MRE-2013-{}_GS.xml",
"_LANGUAGES_MAIN": ("AR", "BG", "EN", "ES", "RO"),
"_PATH_ALZHEIMER": "2013/Biomedical_About_Alzheimer/Training_Data/Goldstandard/QA4MRE-2013_BIO_GS-RUN.xml",
"_PATH_ENTRANCE_EXAM": "2013/Entrance_Exams/Training_Data/Goldstandard/qa4mre-exam-test-withanswer.xml",
},
}
def _get_question(topic_id, topic_name, test_id, document_id, document_str, question):
"""Gets instance ID and features for every question.
Args:
topic_id: string
topic_name: string
test_id: string
document_id: string
document_str: string
question: XML element for question
Returns:
id_: string. Unique ID for instance.
feats: dict of instance features
"""
question_id = question.attrib["q_id"]
for q_text in question.iter("q_str"):
question_str = q_text.text
possible_answers = list()
for answer in question.iter("answer"):
answer_id = answer.attrib["a_id"]
answer_str = answer.text
possible_answers.append({"answer_id": answer_id, "answer_str": answer_str})
if "correct" in answer.attrib:
correct_answer_id = answer_id
correct_answer_str = answer_str
id_ = "_".join([topic_id, topic_name, test_id, question_id])
logger.info("ID: %s", id_)
feats = {
"topic_id": topic_id,
"topic_name": topic_name,
"test_id": test_id,
"document_id": document_id,
"document_str": document_str,
"question_id": question_id,
"question_str": question_str,
"answer_options": possible_answers,
"correct_answer_id": correct_answer_id,
"correct_answer_str": correct_answer_str,
}
return id_, feats
class Qa4mreConfig(datasets.BuilderConfig):
"""BuilderConfig for Qa4mre."""
def __init__(self, year, track="main", language="EN", **kwargs):
"""BuilderConfig for Qa4Mre.
Args:
year: string, year of dataset
track: string, the task track from PATHS[year]['_TRACKS'].
language: string, Acronym for language in the main task.
**kwargs: keyword arguments forwarded to super.
"""
if track.lower() not in PATHS[year]["_TRACKS"]:
raise ValueError("Incorrect track. Track should be one of the following: ", PATHS[year]["_TRACKS"])
if track.lower() != "main" and language.upper() != "EN":
logger.warning("Only English documents available for pilot " "tracks. Setting English by default.")
language = "EN"
if track.lower() == "main" and language.upper() not in PATHS[year]["_LANGUAGES_MAIN"]:
raise ValueError(
"Incorrect language for the main track. Correct options: ", PATHS[year]["_LANGUAGES_MAIN"]
)
self.year = year
self.track = track.lower()
self.lang = language.upper()
name = self.year + "." + self.track + "." + self.lang
description = _DESCRIPTION
description += ("This configuration includes the {} track for {} language " "in {} year.").format(
self.track, self.lang, self.year
)
super(Qa4mreConfig, self).__init__(
name=name, description=description, version=datasets.Version("0.1.0"), **kwargs
)
class Qa4mre(datasets.GeneratorBasedBuilder):
"""QA4MRE dataset from CLEF shared tasks 2011, 2012, 2013."""
BUILDER_CONFIGS = [
Qa4mreConfig(year="2011", track="main", language="DE"), # 2011 Main track German (2011.main.DE)
Qa4mreConfig(year="2011", track="main", language="EN"), # 2011 Main track English (2011.main.EN)
Qa4mreConfig(year="2011", track="main", language="ES"), # 2011 Main track Spanish (2011.main.ES)
Qa4mreConfig(year="2011", track="main", language="IT"), # 2011 Main track Italian (2011.main.IT)
Qa4mreConfig(year="2011", track="main", language="RO"), # 2011 Main track Romanian (2011.main.RO)
Qa4mreConfig(year="2012", track="main", language="AR"), # 2012 Main track Arabic (2012.main.AR)
Qa4mreConfig(year="2012", track="main", language="BG"), # 2012 Main track Bulgarian (2012.main.BG)
Qa4mreConfig(year="2012", track="main", language="DE"), # 2012 Main track German (2012.main.DE)
Qa4mreConfig(year="2012", track="main", language="EN"), # 2012 Main track English (2012.main.EN)
Qa4mreConfig(year="2012", track="main", language="ES"), # 2012 Main track Spanish (2012.main.ES)
Qa4mreConfig(year="2012", track="main", language="IT"), # 2012 Main track Italian (2012.main.IT)
Qa4mreConfig(year="2012", track="main", language="RO"), # 2012 Main track Romanian (2012.main.RO)
Qa4mreConfig(year="2012", track="alzheimers", language="EN"), # (2012.alzheimers.EN)
Qa4mreConfig(year="2013", track="main", language="AR"), # 2013 Main track Arabic (2013.main.AR)
Qa4mreConfig(year="2013", track="main", language="BG"), # 2013 Main track Bulgarian (2013.main.BG)
Qa4mreConfig(year="2013", track="main", language="EN"), # 2013 Main track English (2013.main.EN)
Qa4mreConfig(year="2013", track="main", language="ES"), # 2013 Main track Spanish (2013.main.ES)
Qa4mreConfig(year="2013", track="main", language="RO"), # 2013 Main track Romanian (2013.main.RO)
Qa4mreConfig(year="2013", track="alzheimers", language="EN"), # (2013.alzheimers.EN)
Qa4mreConfig(year="2013", track="entrance_exam", language="EN"), # (2013.entrance_exam.EN)
]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"topic_id": datasets.Value("string"),
"topic_name": datasets.Value("string"),
"test_id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"document_str": datasets.Value("string"),
"question_id": datasets.Value("string"),
"question_str": datasets.Value("string"),
"answer_options": datasets.features.Sequence(
{"answer_id": datasets.Value("string"), "answer_str": datasets.Value("string")}
),
"correct_answer_id": datasets.Value("string"),
"correct_answer_str": datasets.Value("string"),
}
),
# No default supervised keys because both passage and question are used
# to determine the correct answer.
supervised_keys=None,
homepage="http://nlp.uned.es/clef-qa/repository/pastCampaigns.php",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
cfg = self.config
download_urls = dict()
if cfg.track == "main":
download_urls["{}.main.{}".format(cfg.year, cfg.lang)] = _BASE_URL + PATHS[cfg.year][
"_PATH_TMPL_MAIN_GS"
].format(cfg.lang)
if cfg.year in ["2012", "2013"] and cfg.track == "alzheimers":
download_urls["{}.alzheimers.EN".format(cfg.year)] = _BASE_URL + PATHS[cfg.year]["_PATH_ALZHEIMER"]
if cfg.year == "2013" and cfg.track == "entrance_exam":
download_urls["2013.entrance_exam.EN"] = _BASE_URL + PATHS[cfg.year]["_PATH_ENTRANCE_EXAM"]
downloaded_files = dl_manager.download_and_extract(download_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["{}.{}.{}".format(cfg.year, cfg.track, cfg.lang)]},
)
]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, "rb") as f:
tree = ET.parse(f)
root = tree.getroot() # test-set
for topic in root:
topic_id = topic.attrib["t_id"]
topic_name = topic.attrib["t_name"]
for test in topic:
test_id = test.attrib["r_id"]
for document in test.iter("doc"):
document_id = document.attrib["d_id"]
document_str = document.text
for question in test.iter("q"):
yield _get_question(topic_id, topic_name, test_id, document_id, document_str, question)
|