Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
1K - 10K
Tags:
relation-prediction
License:
File size: 12,510 Bytes
da652a3 911afc9 da652a3 911afc9 3f2b22f da652a3 5404052 da652a3 ba0a801 6bc3c01 72b6ae6 8b8d225 da652a3 ba0a801 da652a3 ba0a801 da652a3 a560dc6 da652a3 6bc3c01 da652a3 a560dc6 72b6ae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- es
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: null
pretty_name: eHealth-KD
tags:
- relation-prediction
dataset_info:
features:
- name: sentence
dtype: string
- name: entities
list:
- name: ent_id
dtype: string
- name: ent_text
dtype: string
- name: ent_label
dtype:
class_label:
names:
0: Concept
1: Action
2: Predicate
3: Reference
- name: start_character
dtype: int32
- name: end_character
dtype: int32
- name: relations
list:
- name: rel_id
dtype: string
- name: rel_label
dtype:
class_label:
names:
0: is-a
1: same-as
2: has-property
3: part-of
4: causes
5: entails
6: in-time
7: in-place
8: in-context
9: subject
10: target
11: domain
12: arg
- name: arg1
dtype: string
- name: arg2
dtype: string
config_name: ehealth_kd
splits:
- name: test
num_bytes: 47314
num_examples: 100
- name: train
num_bytes: 425713
num_examples: 800
- name: validation
num_bytes: 108154
num_examples: 199
download_size: 565900
dataset_size: 581181
---
# Dataset Card for eHealth-KD
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [eHealth-KD homepage](https://knowledge-learning.github.io/ehealthkd-2020/)
- **Repository:** [eHealth-KD repository](https://github.com/knowledge-learning/ehealthkd-2020)
- **Paper:** [eHealth-KD overview paper](http://ceur-ws.org/Vol-2664/eHealth-KD_overview.pdf)
- **Leaderboard:** [eHealth-KD Challenge 2020 official results](https://knowledge-learning.github.io/ehealthkd-2020/results)
- **Point of Contact:** [Yoan Gutiérrez Vázquez](mailto:ygutierrez@dlsi.ua.es) (Organization Committee), [María Grandury](mailto:yacine@huggingface.co) (Dataset Submitter)
### Dataset Summary
Dataset of the eHealth-KD Challenge at IberLEF 2020. It is designed for the identification of semantic
entities and relations in Spanish health documents.
### Supported Tasks and Leaderboards
The eHealth-KD challenge proposes two computational subtasks:
- `named-entity-recognition`: Given a sentence of an eHealth document written in Spanish, the goal of this subtask is to
identify all the entities and their types.
- `relation-prediction`: The purpose of this subtask is to recognise all relevant semantic relationships between the entities recognised.
For an analysis of the most successful approaches of this challenge, read the [eHealth-KD overview paper](http://ceur-ws.org/Vol-2664/eHealth-KD_overview.pdf).
### Languages
The text in the dataset is in Spanish (BCP-47 code: `es`).
## Dataset Structure
### Data Instances
The first example of the eHeatlh-KD Corpus train set looks as follows:
```
{
'sentence': 'En la leucemia linfocítica crónica, hay demasiados linfocitos, un tipo de glóbulos blancos.',
'entities': {
[
'ent_id: 'T1',
'ent_text': 'leucemia linfocítica crónica',
'ent_label': 0,
'start_character': 6,
'end_character': 34
],
[
'ent_id: 'T2',
'ent_text': 'linfocitos',
'ent_label': 0,
'start_character': 51,
'end_character': 61
],
[
'ent_id: 'T3',
'ent_text': 'glóbulos blancos',
'ent_label': 0,
'start_character': 74,
'end_character': 90
]
},
relations: {
[
'rel_id: 'R0'
'rel_label': 0,
'arg1': T2
'arg2': T3
],
[
'rel_id': 'R1'
'rel_label': 5,
'arg1': T1,
'arg2': T2
]
}
}
```
### Data Fields
- `sentence`: sentence of an eHealth document written in Spanish
- `entities`: list of entities identified in the sentence
- `ent_id`: entity identifier (`T`+ a number)
- `ent_text`: entity, can consist of one or more complete words (i.e., not a prefix or a suffix of a word), and will
never include any surrounding punctuation symbols, parenthesis, etc.
- `ent_label`: type of entity (`Concept`, `Action`, `Predicate` or `Reference`)
- `start_character`: position of the first character of the entity
- `end_character`: position of the last character of the entity
- `relations`: list of semantic relationships between the entities recognised
- `rel_id`: relation identifier (`R` + a number)
- `rel_label`: type of relation, can be a general relation (`is-a`, `same-as`, `has-property`, `part-of`, `causes`, `entails`),
a contextual relation (`in-time`, `in-place`, `in-context`) an action role (`subject`, `target`) or a predicate role (`domain`, `arg`).
- `arg1`: ID of the first entity of the relation
- `arg2`: ID of the second entity of the relation
For more information about the types of entities and relations, click [here](https://knowledge-learning.github.io/ehealthkd-2020/tasks).
### Data Splits
The data is split into a training, validation and test set. The split sizes are as follow:
| | Train | Val | Test |
| ----- | ------ | ----- | ---- |
| eHealth-KD 2020 | 800 | 199 | 100 |
In the challenge there are 4 different scenarios for testing. The test data of this dataset corresponds to the third scenario.
More information about the testing data [here](https://github.com/knowledge-learning/ehealthkd-2020/tree/master/data/testing).
## Dataset Creation
### Curation Rationale
The vast amount of clinical text available online has motivated the development of automatic
knowledge discovery systems that can analyse this data and discover relevant facts.
The eHealth Knowledge Discovery (eHealth-KD) challenge, in its third edition, leverages
a semantic model of human language that encodes the most common expressions of factual
knowledge, via a set of four general-purpose entity types and thirteen semantic relations among
them. The challenge proposes the design of systems that can automatically annotate entities and
relations in clinical text in the Spanish language.
### Source Data
#### Initial Data Collection and Normalization
As in the previous edition, the corpus for eHealth-KD 2020 has been extracted from MedlinePlus sources. This platform
freely provides large health textual data from which we have made a selection for constituting the eHealth-KD corpus.
The selection has been made by sampling specific XML files from the collection available in the [Medline website](https://medlineplus.gov/xml.html).
```
“MedlinePlus is the National Institutes of Health’s Website for patients and their families and
friends. Produced by the National Library of Medicine, the world’s largest medical library, it
brings you information about diseases, conditions, and wellness issues in language you can
understand. MedlinePlus offers reliable, up-to-date health information, anytime, anywhere, for free.”
```
These files contain several entries related to health and medicine topics and have been processed to remove all
XML markup to extract the textual content. Only Spanish language items were considered. Once cleaned, each individual
item was converted to a plain text document, and some further post-processing is applied to remove unwanted sentences,
such as headers, footers and similar elements, and to flatten HTML lists into plain sentences.
#### Who are the source language producers?
As in the previous edition, the corpus for eHealth-KD 2020 was extracted from [MedlinePlus](https://medlineplus.gov/xml.html) sources.
### Annotations
#### Annotation process
Once the MedlinePlus files were cleaned, they were manually tagged using [BRAT](http://brat.nlplab.org/) by a group of
annotators. After tagging, a post-processing was applied to BRAT’s output files (ANN format) to obtain the output files
in the formats needed for the challenge.
#### Who are the annotators?
The data was manually tagged.
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
"The eHealth-KD 2020 proposes –as the previous editions– modeling the human language in a scenario in which Spanish
electronic health documents could be machine-readable from a semantic point of view.
With this task, we expect to encourage the development of software technologies to automatically extract a large variety
of knowledge from eHealth documents written in the Spanish Language."
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Dataset provided for research purposes only. Please check dataset license for additional information.
## Additional Information
### Dataset Curators
#### Organization Committee
| Name | Email | Institution |
|:---------------------------------------:|:---------------------:|:-----------------------------:|
| Yoan Gutiérrez Vázquez (contact person) | ygutierrez@dlsi.ua.es | University of Alicante, Spain |
| Suilan Estévez Velarde | sestevez@matcom.uh.cu | University of Havana, Cuba |
| Alejandro Piad Morffis | apiad@matcom.uh.cu | University of Havana, Cuba |
| Yudivián Almeida Cruz | yudy@matcom.uh.cu | University of Havana, Cuba |
| Andrés Montoyo Guijarro | montoyo@dlsi.ua.es | University of Alicante, Spain |
| Rafael Muñoz Guillena | rafael@dlsi.ua.es | University of Alicante, Spain |
#### Funding
This research has been supported by a Carolina Foundation grant in agreement with University of Alicante and University
of Havana. Moreover, it has also been partially funded by both aforementioned universities, IUII, Generalitat Valenciana,
Spanish Government, Ministerio de Educación, Cultura y Deporte through the projects SIIA (PROMETEU/2018/089) and
LIVINGLANG (RTI2018-094653-B-C22).
### Licensing Information
This dataset is under the Attribution-NonCommercial-ShareAlike 4.0 International
[(CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/).
To accept the distribution terms, please fill in the following [form](https://forms.gle/pUJutSDq2FYLwNWQA).
### Citation Information
In the following link you can find the
[preliminar bibtexts of the systems’ working-notes](https://knowledge-learning.github.io/ehealthkd-2020/shared/eHealth-KD_2020_bibtexts.zip).
In addition, to cite the eHealth-KD challenge you can use the following preliminar bibtext:
```
@inproceedings{overview_ehealthkd2020,
author = {Piad{-}Morffis, Alejandro and
Guti{\'{e}}rrez, Yoan and
Ca{\~{n}}izares-Diaz, Hian and
Estevez{-}Velarde, Suilan and
Almeida{-}Cruz, Yudivi{\'{a}}n and
Mu{\~{n}}oz, Rafael and
Montoyo, Andr{\'{e}}s},
title = {Overview of the eHealth Knowledge Discovery Challenge at IberLEF 2020},
booktitle = ,
year = {2020},
}
```
### Contributions
Thanks to [@mariagrandury](https://github.com/mariagrandury) for adding this dataset. |