Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
code
Size:
100K - 1M
ArXiv:
License:
File size: 3,322 Bytes
3a8c582 0d3b6be bd3909a 0d3b6be 60c5c13 0d3b6be 60c5c13 3a8c582 0d3b6be aeeba31 0d3b6be aeeba31 0d3b6be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license:
- cc-by-sa-4.0
multilinguality:
- multilingual
size_categories:
- unknown
source_datasets: []
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: xlcost-text-to-code
---
# XLCost for text-to-code synthesis
## Dataset Description
This is a subset of [XLCoST benchmark](https://github.com/reddy-lab-code-research/XLCoST), for text-to-code generation at snippet level and program level for **7** programming languages: `Python, C, C#, C++, Java, Javascript and PHP`.
## Languages
The dataset contains text in English and its corresponding code translation. Each program is divided into several code snippets, so the snipppet-level subsets contain these code snippets with their corresponding comments, for program-level subsets, the comments were concatenated in one long description. Moreover, programs in all the languages are aligned at the snippet level and the comment for a particular snippet is the same across all the languages.
## Dataset Structure
To load the dataset you need to specify a subset among the **14 exiting instances**: `LANGUAGE-snippet-level/LANGUAGE-program-level` for `LANGUAGE` in `[Python, C, Csharp, C++, Java, Javascript and PHP]`. By default `Python-snippet-level` is loaded.
```python
from datasets import load_dataset
load_dataset("codeparrot/xlcost-text-to-code", "Python-program-level")
DatasetDict({
train: Dataset({
features: ['text', 'code'],
num_rows: 9263
})
test: Dataset({
features: ['text', 'code'],
num_rows: 887
})
validation: Dataset({
features: ['text', 'code'],
num_rows: 472
})
})
```
```python
next(iter(data["train"]))
{'text': 'Maximum Prefix Sum possible by merging two given arrays | Python3 implementation of the above approach ; Stores the maximum prefix sum of the array A [ ] ; Traverse the array A [ ] ; Stores the maximum prefix sum of the array B [ ] ; Traverse the array B [ ] ; Driver code',
'code': 'def maxPresum ( a , b ) : NEW_LINE INDENT X = max ( a [ 0 ] , 0 ) NEW_LINE for i in range ( 1 , len ( a ) ) : NEW_LINE INDENT a [ i ] += a [ i - 1 ] NEW_LINE X = max ( X , a [ i ] ) NEW_LINE DEDENT Y = max ( b [ 0 ] , 0 ) NEW_LINE for i in range ( 1 , len ( b ) ) : NEW_LINE INDENT b [ i ] += b [ i - 1 ] NEW_LINE Y = max ( Y , b [ i ] ) NEW_LINE DEDENT return X + Y NEW_LINE DEDENT A = [ 2 , - 1 , 4 , - 5 ] NEW_LINE B = [ 4 , - 3 , 12 , 4 , - 3 ] NEW_LINE print ( maxPresum ( A , B ) ) NEW_LINE'}
```
Note that the data undergo some tokenization hence the additional whitespaces and the use of NEW_LINE instead of `\n` and INDENT instead of `\t`, DEDENT to cancel indentation...
## Data Fields
* text: natural language description/comment
* code: code at snippet/program level
## Data Splits
Each subset has three splits: train, test and validation.
## Citation Information
```
@misc{zhu2022xlcost,
title = {XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence},
url = {https://arxiv.org/abs/2206.08474},
author = {Zhu, Ming and Jain, Aneesh and Suresh, Karthik and Ravindran, Roshan and Tipirneni, Sindhu and Reddy, Chandan K.},
year = {2022},
eprint={2206.08474},
archivePrefix={arXiv}
}
``` |