Update dataset card for MultiOOP: A Multi-Language Object-Oriented Programming Benchmark

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +66 -33
README.md CHANGED
@@ -1,34 +1,53 @@
1
  ---
 
 
2
  license: mit
 
 
3
  task_categories:
4
  - text-generation
 
5
  tags:
6
  - code
7
  - dataset
8
- size_categories:
9
- - n<1K
10
- language:
11
- - en
12
- pretty_name: CodeEval
 
 
 
 
 
13
  ---
14
- license: apache-2.0
15
- ---
16
- # Dataset Card for Object-Oriented Programming
17
 
18
  ## Dataset Description
19
 
20
- - **Repository:** [GitHub Repository](https://github.com/alphadl/OOP-eval)
21
- - **Paper:** [Object-Oriented Programming Evaluation Benchmark for LLMs](https://arxiv.org/abs/2401.06628)
22
 
23
  ### Dataset Summary
24
 
25
- The OOP benchmark consists of 431 instances, and contains three difficulty levels: Simple-level OOP, Moderate-level OOP, and Difficult-level OOP.
26
 
27
  ### Supported Tasks and Leaderboards
28
 
 
 
29
  ### Languages
30
 
31
- The Object-Oriented Programming problems are written in Python and contain English natural text in comments and docstrings.
 
 
 
 
 
 
 
 
32
 
33
  ## Dataset Structure
34
 
@@ -39,58 +58,72 @@ load_dataset("oop")
39
  DatasetDict({
40
  test: Dataset({
41
  features: ['task_id', 'question', 'canonical_solution', 'test_list', 'test_function', 'entry_point', 'test_matching', 'test_match_function'],
42
- num_rows: 431
43
  })
44
  })
45
  ```
46
 
47
  ### Data Instances
48
 
49
- #### OOP benchmark
50
  ```
51
  {
52
  'task_id': 'OOP/0',
53
  'question': 'First, write a **WDS** class using the Python language. Then, within the WDS class, create a public function called **without_duplicates** to implement finding the length of the longest substring in a given string **s** that does not contain any duplicate characters.',
54
- 'test_function': 'def test_run(content1):\n return WDS().without_duplicates(content1)',
 
55
  'test_list': [
56
  'assert candidate("abcabcbb")==3',
57
  'assert candidate("bbbbb")==1',
58
  'assert candidate("pwwkew")==3'],
59
  'entry_point': 'test_run',
60
  'test_matching': 'assert candidate([["class WDS", "def without_duplicates"]]) == True',
61
- 'test_match_function': 'def matching_function(content):\n def run_match(text):\n for task in text:\n if task not in str_content:\n return False\n return True\n len_cont = len(content)\n if len_cont==1 and run_match(content[0]) == True:\n return True\n elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True):\n return True\n else:\n return False'
 
 
 
 
 
 
 
 
 
 
 
 
62
  }
63
  ```
64
 
65
  ### Data Fields
66
 
67
- - `task_id`: identifier for the data sample
68
- - `question`: description of programming task
69
- - `test_function`: run function for the test
70
- - 'test_list': list of tests to verify solution
71
- - `entry_point`: entry point for test
72
- - 'test_matching': list of tests to verify solution
73
- - 'test_match_function': matching function for the test
 
74
 
75
  ### Data Splits
76
 
77
- The OOP dataset only consists of a test split with 431 samples.
78
 
79
  ## Dataset Creation
80
 
81
- See section 3.2 of original [paper](https://arxiv.org/abs/2401.06628).
82
 
83
  ### Citation Information
84
- ```
85
- @inproceedings{wang2024oop,
86
- title={OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models},
87
- author={Shuai Wang and Liang Ding and Li Shen and Yong Luo and Bo Du and Dacheng Tao},
88
- year={2024},
89
- booktitle={Findings of the Association for Computational Linguistics: ACL 2023},
90
- url={https://arxiv.org/abs/2401.06628},
91
  }
92
  ```
93
 
94
  ### Contributions
95
 
96
- Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset.
 
1
  ---
2
+ language:
3
+ - en
4
  license: mit
5
+ size_categories:
6
+ - 1K<n<10K
7
  task_categories:
8
  - text-generation
9
+ pretty_name: MultiOOP Benchmark
10
  tags:
11
  - code
12
  - dataset
13
+ - object-oriented-programming
14
+ - code-generation
15
+ - benchmark
16
+ - multi-language
17
+ - python
18
+ - php
19
+ - cpp
20
+ - csharp
21
+ - java
22
+ - javascript
23
  ---
24
+
25
+ # MultiOOP: A Multi-Language Object-Oriented Programming Benchmark for Large Language Models
 
26
 
27
  ## Dataset Description
28
 
29
+ - **Repository:** [GitHub Repository](https://github.com/alphadl/OOP-eval)
30
+ - **Paper:** [A Multi-Language Object-Oriented Programming Benchmark for Large Language Models](https://huggingface.co/papers/2509.26111)
31
 
32
  ### Dataset Summary
33
 
34
+ MultiOOP is a multi-language object-oriented programming benchmark designed to establish fair and robust evaluations for intelligent code generation by large language models (LLMs). It addresses major imbalances in existing benchmarks by covering six popular programming languages: Python, PHP, C++, C#, Java, and JavaScript. The benchmark features 267 tasks per language, totaling 1602 unique tasks, and extends an existing single-language OOP benchmark to a multilingual setting. MultiOOP includes an automated framework for augmenting test cases and introduces the `pass@o` metric to specifically quantify LLMs' understanding of core object-oriented programming concepts. It covers three difficulty levels: Simple-level OOP, Moderate-level OOP, and Difficult-level OOP.
35
 
36
  ### Supported Tasks and Leaderboards
37
 
38
+ The dataset supports tasks related to object-oriented code generation and evaluation for Large Language Models (LLMs). It is designed to assess LLMs' ability to understand and generate code that encapsulates core OOP concepts across multiple programming languages. Evaluation is typically performed using metrics like `pass@k` and the specialized `pass@o` for object-oriented understanding.
39
+
40
  ### Languages
41
 
42
+ The MultiOOP benchmark problems are available in six popular programming languages:
43
+ - Python
44
+ - PHP
45
+ - C++
46
+ - C#
47
+ - Java
48
+ - JavaScript
49
+
50
+ The natural language descriptions for the tasks, including comments and docstrings, are in English.
51
 
52
  ## Dataset Structure
53
 
 
58
  DatasetDict({
59
  test: Dataset({
60
  features: ['task_id', 'question', 'canonical_solution', 'test_list', 'test_function', 'entry_point', 'test_matching', 'test_match_function'],
61
+ num_rows: 1602 # 267 tasks * 6 languages
62
  })
63
  })
64
  ```
65
 
66
  ### Data Instances
67
 
68
+ #### Example for MultiOOP benchmark (Python)
69
  ```
70
  {
71
  'task_id': 'OOP/0',
72
  'question': 'First, write a **WDS** class using the Python language. Then, within the WDS class, create a public function called **without_duplicates** to implement finding the length of the longest substring in a given string **s** that does not contain any duplicate characters.',
73
+ 'test_function': 'def test_run(content1):\
74
+ return WDS().without_duplicates(content1)',
75
  'test_list': [
76
  'assert candidate("abcabcbb")==3',
77
  'assert candidate("bbbbb")==1',
78
  'assert candidate("pwwkew")==3'],
79
  'entry_point': 'test_run',
80
  'test_matching': 'assert candidate([["class WDS", "def without_duplicates"]]) == True',
81
+ 'test_match_function': 'def matching_function(content):\
82
+ def run_match(text):\
83
+ for task in text:\
84
+ if task not in str_content:\
85
+ return False\
86
+ return True\
87
+ len_cont = len(content)\
88
+ if len_cont==1 and run_match(content[0]) == True:\
89
+ return True\
90
+ elif (len_cont==2 and run_match(content[0]) == True) or (len_cont==2 and run_match(content[1]) == True):\
91
+ return True\
92
+ else:\
93
+ return False'
94
  }
95
  ```
96
 
97
  ### Data Fields
98
 
99
+ - `task_id`: Identifier for the data sample (e.g., 'Python/OOP/0', 'Java/OOP/0').
100
+ - `question`: Natural language description of the programming task.
101
+ - `canonical_solution`: The ground truth solution to the programming task.
102
+ - `test_function`: The function used to run the tests against the generated code.
103
+ - `test_list`: A list of assertions or test cases to verify the functional correctness of the solution.
104
+ - `entry_point`: The entry point function for test execution.
105
+ - `test_matching`: Tests designed to verify adherence to core OOP concepts (e.g., correct class and method definitions).
106
+ - `test_match_function`: The function used to perform conceptual matching tests.
107
 
108
  ### Data Splits
109
 
110
+ The MultiOOP dataset consists of a test split containing 1602 samples in total, comprising 267 distinct tasks for each of the six supported programming languages.
111
 
112
  ## Dataset Creation
113
 
114
+ For detailed information on the dataset's creation methodology, task design, the translator used to extend the single-language benchmark, and the definition of the `pass@o` metric, please refer to the original paper: [A Multi-Language Object-Oriented Programming Benchmark for Large Language Models](https://huggingface.co/papers/2509.26111).
115
 
116
  ### Citation Information
117
+ ```bibtex
118
+ @article{wang2024multioop,
119
+ title={A Multi-Language Object-Oriented Programming Benchmark for Large Language Models},
120
+ author={Wang, Shuai and Ding, Liang and Shen, Li and Luo, Yong and Du, Bo and Tao, Dacheng},
121
+ journal={arXiv preprint arXiv:2509.26111},
122
+ year={2024},
123
+ url={https://huggingface.co/papers/2509.26111}
124
  }
125
  ```
126
 
127
  ### Contributions
128
 
129
+ Thanks to [@lvwerra](https://github.com/lvwerra) for adding this dataset.