Datasets:
License:
File size: 9,022 Bytes
08853d8 fb759ba 08853d8 931a032 08853d8 1ff60c6 3d9fd73 1ff60c6 08853d8 915edb0 08853d8 5a48d5c 08853d8 eeb19bb 08853d8 eeb19bb 08853d8 eeb19bb 08853d8 1ff60c6 08853d8 1ff60c6 08853d8 1372c18 08853d8 1372c18 08853d8 1372c18 08853d8 1ff60c6 a1b1543 08853d8 1ff60c6 08853d8 1ff60c6 08853d8 1ff60c6 08853d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import json
import datasets
from PIL import Image
_DESCRIPTION = """
The Arxiv Figure Table Database (AFTdb) facilitates the linking of documentary
objects, such as figures and tables, with their captions. This enables a
comprehensive description of document-oriented images (excluding images from
cameras). For the table component, the character structure is preserved in
addition to the image of the table and its caption. This database is ideal
for multimodal processing of documentary images.
"""
_LICENSE = "apache-2.0"
_CITATION = """
@online{DeAFTdb,
AUTHOR = {Cyrile Delestre},
URL = {https://huggingface.co/datasets/cmarkea/aftdb},
YEAR = {2024},
KEYWORDS = {NLP ; Multimodal}
}
"""
_NB_TAR_FIGURE = [158, 4] # train, test
_NB_TAR_TABLE = [17, 1] # train, test
def extract_files_tar(all_path, data_dir, nb_files, data_files=None):
if data_files:
paths_train = [
os.path.join(data_dir, ii)
for ii in data_files['tain']
]
paths_test = [
os.path.join(data_dir, ii)
for ii in data_files['test']
]
else:
paths_train = [
os.path.join(data_dir, f"train-{ii:03d}.tar")
for ii in range(nb_files[0])
]
paths_test = [
os.path.join(data_dir, f"test-{ii:03d}.tar")
for ii in range(nb_files[1])
]
print(paths_test)
all_path['train'] += paths_train
all_path['test'] += paths_test
class AFTConfig(datasets.BuilderConfig):
"""Builder Config for AFTdb"""
def __init__(self, nb_files_figure, nb_files_table, **kwargs):
super().__init__(version=datasets.__version__, **kwargs)
self.nb_files_figure = nb_files_figure
self.nb_files_table = nb_files_table
class AFT_Dataset(datasets.GeneratorBasedBuilder):
"""Arxiv Figure Table database (AFTdb)"""
BUILDER_CONFIGS = [
AFTConfig(
name="figure",
description=(
"Dataset containing scientific article figures associated "
"with their caption, summary, and article title."
),
data_dir="./{type}", # A modiféer sur Huggingface Hub
nb_files_figure=_NB_TAR_FIGURE,
nb_files_table=None
),
AFTConfig(
name="table",
description=(
"Dataset containing tables in JPG image format from "
"scientific articles, along with the corresponding textual "
"representation of the table, including its caption, summary, "
"and article title."
),
data_dir="./{type}", # A modiféer sur Huggingface Hub
nb_files_figure=None,
nb_files_table=_NB_TAR_TABLE
),
AFTConfig(
name="figure+table",
description=(
"Dataset containing figure and tables in JPG image format "
"from scientific articles, along with the corresponding "
"textual representation of the table, including its caption, "
"summary, and article title."
),
data_dir="./{type}", # A modiféer sur Huggingface Hub
nb_files_figure=_NB_TAR_FIGURE,
nb_files_table=_NB_TAR_TABLE
)
]
DEFAULT_CONFIG_NAME = "figure+table"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'id': datasets.Value('string'),
'paper_id': datasets.Value('string'),
'type': datasets.Value('string'),
'authors': datasets.Value('string'),
'categories': datasets.Value('string'),
'title': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'summary': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'caption': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'image': datasets.Image(),
'data': datasets.Value('string'),
'newcommands': datasets.Sequence(datasets.Value('string'))
}
),
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
all_path = dict(train=[], test=[])
if self.config.nb_files_figure:
extract_files_tar(
all_path=all_path,
data_dir=self.config.data_dir.format(type='figure'),
nb_files=self.config.nb_files_figure,
data_files=self.config.data_files
)
if self.config.nb_files_table:
extract_files_tar(
all_path=all_path,
data_dir=self.config.data_dir.format(type='table'),
nb_files=self.config.nb_files_table,
data_files=self.config.data_files
)
if dl_manager.is_streaming:
downloaded_files = dl_manager.download(all_path)
downloaded_files['train'] = [
dl_manager.iter_archive(ii) for ii in downloaded_files['train']
]
downloaded_files['test'] = [
dl_manager.iter_archive(ii) for ii in downloaded_files['test']
]
else:
downloaded_files = dl_manager.download_and_extract(all_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'filepaths': downloaded_files['train'],
'is_streaming': dl_manager.is_streaming
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": downloaded_files['test'],
'is_streaming': dl_manager.is_streaming
}
)
]
def _generate_examples(self, filepaths, is_streaming):
if is_streaming:
_json, _jpg, _id_json, _id_img = False, False, '', ''
for iter_tar in filepaths:
for path, file_obj in iter_tar:
if path.endswith('.json'):
metadata = json.load(file_obj)
_id_json = path.split('.')[0]
_json = True
if path.endswith('.jpg'):
img = Image.open(file_obj)
_id_img = path.split('.')[0]
_jpg = True
if _json and _jpg:
assert _id_json == _id_img
_json, _jpg = False, False
yield metadata['id'], {
'id': metadata['id'],
'paper_id': metadata['paper_id'],
'type': metadata['type'],
'authors': metadata['authors'],
'categories': metadata['categories'],
'title': metadata['title'],
'summary': metadata['summary'],
'caption': metadata['caption'],
'image': img,
'data': metadata['data'],
'newcommands': metadata['newcommands']
}
else:
for path in filepaths:
all_file = os.listdir(path)
all_id_obs = sorted(
set(map(lambda x: x.split('.')[0], all_file))
)
for id_obs in all_id_obs:
path_metadata = os.path.join(
path,
f"{id_obs}.metadata.json"
)
path_image = os.path.join(path, f"{id_obs}.image.jpg")
metadata = json.load(open(path_metadata, 'r'))
img = Image.open(path_image)
yield id_obs, {
'id': metadata['id'],
'paper_id': metadata['paper_id'],
'type': metadata['type'],
'authors': metadata['authors'],
'categories': metadata['categories'],
'title': metadata['title'],
'summary': metadata['summary'],
'caption': metadata['caption'],
'image': img,
'data': metadata['data'],
'newcommands': metadata['newcommands']
}
|