Datasets:

File size: 6,120 Bytes
0bb99db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ee2be2
 
 
56fe1d2
0bb99db
 
 
2f3547c
0bb99db
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5560a
0bb99db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fe1d2
0bb99db
 
 
 
56fe1d2
0bb99db
 
 
 
56fe1d2
0bb99db
 
 
 
56fe1d2
0bb99db
 
 
 
 
 
 
 
8e5560a
0bb99db
 
 
 
 
 
 
d0a9f9e
0bb99db
 
 
 
 
8e5560a
0bb99db
 
 
 
 
 
 
8e5560a
0bb99db
 
 
 
 
 
 
 
 
 
8e5560a
 
 
 
 
 
0bb99db
 
 
 
8e5560a
0bb99db
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os

import datasets


_CITATION = ''
_DESCRIPTION = """The dataset contains 6339 training samples, 815 validation samples and 785 test samples. 
Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), 
list of tokens ('tokens'), list of lemmas ('lemmas'), list of UPOS tags ('upos_tags'), 
list of Multext-East tags ('xpos_tags), list of morphological features ('feats'), 
and list of IOB tags ('iob_tags'), which are encoded as class labels.
"""
_HOMEPAGE = ''
_LICENSE = ''

_URL = 'https://huggingface.co/datasets/classla/reldi_hr/raw/main/data.zip'
_TRAINING_FILE = 'train_all.conllup'
_DEV_FILE = 'dev_all.conllup'
_TEST_FILE = 'test_all.conllup'
_DATA_DIR = 'data'


class ReldiHr(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version('1.0.1')

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name='reldi_hr',
            version=VERSION,
            description=''
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                'sent_id': datasets.Value('string'),
                'tokens': datasets.Sequence(datasets.Value('string')),
                'norms': datasets.Sequence(datasets.Value('string')),
                'lemmas': datasets.Sequence(datasets.Value('string')),
                'upos_tags': datasets.Sequence(datasets.Value('string')),
                'xpos_tags': datasets.Sequence(datasets.Value('string')),
                'feats': datasets.Sequence(datasets.Value('string')),
                'iob_tags': datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=[
                            'I-org',
                            'B-misc',
                            'B-per',
                            'B-deriv-per',
                            'B-org',
                            'B-loc',
                            'I-deriv-per',
                            'I-misc',
                            'I-loc',
                            'I-per',
                            'O'
                        ]
                    )
                )
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = os.path.join(dl_manager.download_and_extract(_URL), _DATA_DIR)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={
                    'filepath': os.path.join(data_dir, _TRAINING_FILE),
                    'split': 'train'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={
                    'filepath': os.path.join(data_dir, _DEV_FILE),
                    'split': 'dev'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={
                    'filepath': os.path.join(data_dir, _TEST_FILE),
                    'split': 'test'}
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding='utf-8') as f:
            sent_id = ''
            tokens = []
            norms = []
            lemmas = []
            upos_tags = []
            xpos_tags = []
            feats = []
            iob_tags = []
            data_id = 0
            for line in f:
                if line and not line == '\n' and not line.startswith('# global.columns'):
                    if line.startswith('# sent_id'):
                        if tokens:
                            yield data_id, {
                                'sent_id': sent_id,
                                'tokens': tokens,
                                'norms': norms,
                                'lemmas': lemmas,
                                'upos_tags': upos_tags,
                                'xpos_tags': xpos_tags,
                                'feats': feats,
                                'iob_tags': iob_tags
                            }
                            tokens = []
                            norms = []
                            lemmas = []
                            upos_tags = []
                            xpos_tags = []
                            feats = []
                            iob_tags = []
                            data_id += 1
                        sent_id = line.split(' = ')[1].strip()
                    else:
                        splits = line.split('\t')
                        tokens.append(splits[1].strip())
                        norms.append(splits[2].strip())
                        lemmas.append(splits[3].strip())
                        upos_tags.append(splits[4].strip())
                        xpos_tags.append(splits[5].strip())
                        feats.append(splits[6].strip())
                        iob_tags.append(splits[7].strip())

            yield data_id, {
                'sent_id': sent_id,
                'tokens': tokens,
                'norms': norms,
                'lemmas': lemmas,
                'upos_tags': upos_tags,
                'xpos_tags': xpos_tags,
                'feats': feats,
                'iob_tags': iob_tags
            }