Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Languages:
Croatian
Size:
1K - 10K
ArXiv:
License:
File size: 4,469 Bytes
d6f6dec 1c19a19 d6f6dec 7d673d4 d6f6dec 1c19a19 d6f6dec 1c19a19 d6f6dec 1c19a19 d6f6dec 1c19a19 d6f6dec 1c19a19 d6f6dec 1c19a19 d6f6dec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import datasets
_CITATION = '@article{DBLP:journals/corr/abs-2104-09243,
author = {Nikola Ljubesic and
Davor Lauc},
title = {BERTi{\'{c}} - The Transformer Language Model for Bosnian, Croatian,
Montenegrin and Serbian},
journal = {CoRR},
volume = {abs/2104.09243},
year = {2021},
url = {https://arxiv.org/abs/2104.09243},
archivePrefix = {arXiv},
}'
_DESCRIPTION = """The COPA-HR dataset (Choice of plausible alternatives in Croatian) is a translation
of the English COPA dataset (https://people.ict.usc.edu/~gordon/copa.html) by following the
XCOPA dataset translation methodology (https://arxiv.org/abs/2005.00333). The dataset consists of 1000 premises
(My body cast a shadow over the grass), each given a question (What is the cause?), and two choices
(The sun was rising; The grass was cut), with a label encoding which of the choices is more plausible
given the annotator or translator (The sun was rising).
The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the
following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean).
"""
_HOMEPAGE = 'https://www.clarin.si/repository/xmlui/handle/11356/1404'
_LICENSE = ''
_URL = 'https://huggingface.co/datasets/classla/copa_hr/raw/main/data.zip'
_TRAINING_FILE = 'train.jsonl'
_DEV_FILE = 'val.jsonl'
_TEST_FILE = 'test.jsonl'
class CopaHr(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version('1.0.0')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name='copa_hr',
version=VERSION,
description=''
)
]
def _info(self):
features = datasets.Features(
{
'premise': datasets.Value('string'),
'choice1': datasets.Value('string'),
'choice2': datasets.Value('string'),
'label': datasets.features.ClassLabel(names=['0', '1']),
'question': datasets.Value('string'),
'idx': datasets.Value('int64'),
'changed': datasets.Value('bool')
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={
'filepath': os.path.join(data_dir, _TRAINING_FILE),
'split': 'train'}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={
'filepath': os.path.join(data_dir, _DEV_FILE),
'split': 'dev'}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={
'filepath': os.path.join(data_dir, _TEST_FILE),
'split': 'test'}
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding='utf-8') as f:
for i, line in enumerate(f):
data = json.loads(line)
yield i, {
'premise': data['premise'],
'choice1': data['choice1'],
'choice2': data['choice2'],
'question': data['question'],
'label': str(data['label']),
'idx': data['idx'],
'changed': data['changed']
}
|