File size: 7,108 Bytes
2f687f5
 
 
 
 
 
 
 
 
f1d89f1
2f687f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d89f1
00eb7d5
2f687f5
 
 
babc24e
2f687f5
 
 
 
57db7d2
2f687f5
 
57db7d2
4619cea
86bcf01
6029979
 
a55b230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f687f5
 
 
 
 
4619cea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f687f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6029979
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
---
annotations_creators:
- crowdsourced
- expert-generated
- machine-generated
language_creators:
- crowdsourced
- expert-generated
- machine-generated
language:
- af
- ar
- az
- be
- bg
- bn
- ca
- ceb
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- la
- lt
- lv
- ms
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- ta
- th
- tr
- uk
- ur
- vi
- zh
license:
- cc-by-nc-sa-4.0
multilinguality:
- translation
size_categories:
- 100K<n<1M
source_datasets:
- extended|lama
task_categories:
- question-answering
- text-classification
task_ids:
- open-domain-qa
- text-scoring
paperswithcode_id: null
pretty_name: MLama
tags:
- probing
dataset_info:
  features:
  - name: uuid
    dtype: string
  - name: lineid
    dtype: uint32
  - name: obj_uri
    dtype: string
  - name: obj_label
    dtype: string
  - name: sub_uri
    dtype: string
  - name: sub_label
    dtype: string
  - name: template
    dtype: string
  - name: language
    dtype: string
  - name: predicate_id
    dtype: string
  config_name: all
  splits:
  - name: test
    num_bytes: 125919995
    num_examples: 843143
  download_size: 40772287
  dataset_size: 125919995
---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Multilingual LAMA](http://cistern.cis.lmu.de/mlama/)
- **Repository:** [Github](https://github.com/norakassner/mlama)
- **Paper:** [Arxiv](https://arxiv.org/abs/2102.00894)
- **Point of Contact:** [Contact section](http://cistern.cis.lmu.de/mlama/)



### Dataset Summary

This dataset provides the data for mLAMA, a multilingual version of LAMA. 
Regarding LAMA see https://github.com/facebookresearch/LAMA. For mLAMA
the TREx and GoogleRE part of LAMA was considered and machine translated using 
Google Translate, and the Wikidata and Google Knowledge Graph API. The machine
translated templates were checked for validity, i.e., whether they contain 
exactly one '[X]' and one '[Y]'.

This data can be used for creating fill-in-the-blank queries like 
"Paris is the capital of [MASK]" across 53 languages. For more details see
the website http://cistern.cis.lmu.de/mlama/ or the github repo https://github.com/norakassner/mlama.

### Supported Tasks and Leaderboards

Language model knowledge probing.

### Languages

This dataset contains data in 53 languages: 
af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh

## Dataset Structure
For each of the 53 languages and each of the 43 relations/predicates there is a set of triples.

### Data Instances
For each language and relation there are triples, that consists of an object, a predicate and a subject. For each predicate there is a template available. An example for `dataset["test"][0]` is given here:
```python
{
'language': 'af',
'lineid': 0, 
'obj_label': 'Frankryk', 
'obj_uri': 'Q142', 
'predicate_id': 'P1001', 
'sub_label': 'President van Frankryk', 
'sub_uri': 'Q191954', 
'template': "[X] is 'n wettige term in [Y].", 
'uuid': '3fe3d4da-9df9-45ba-8109-784ce5fba38a'
}
```


### Data Fields

Each instance has the following fields
* "uuid": a unique identifier
* "lineid": a identifier unique to mlama
* "obj_id": knowledge graph id of the object
* "obj_label": surface form of the object
* "sub_id": knowledge graph id of the subject
* "sub_label": surface form of the subject
* "template": template
* "language": language code
* "predicate_id": relation id


### Data Splits

There is only one partition that is labelled as 'test data'.

## Dataset Creation

### Curation Rationale

The dataset was translated into 53 languages to investigate knowledge in pretrained language models
multilingually.

### Source Data

#### Initial Data Collection and Normalization

The data has several sources: 

LAMA (https://github.com/facebookresearch/LAMA) licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
T-REx (https://hadyelsahar.github.io/t-rex/) licensed under Creative Commons Attribution-ShareAlike 4.0 International License
Google-RE (https://github.com/google-research-datasets/relation-extraction-corpus)
Wikidata (https://www.wikidata.org/) licensed under Creative Commons CC0 License and Creative Commons Attribution-ShareAlike License

#### Who are the source language producers?

See links above. 

### Annotations

#### Annotation process

Crowdsourced (wikidata) and machine translated.

#### Who are the annotators?

Unknown. 

### Personal and Sensitive Information

Names of (most likely) famous people who have entries in Google Knowledge Graph or Wikidata.

## Considerations for Using the Data

Data was created through machine translation and automatic processes.

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

Not all triples are available in all languages.


## Additional Information

### Dataset Curators

The authors of the mLAMA paper and the authors of the original datasets.

### Licensing Information

The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/

### Citation Information

```
@article{kassner2021multilingual,
  author    = {Nora Kassner and
               Philipp Dufter and
               Hinrich Sch{\"{u}}tze},
  title     = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained
               Language Models},
  journal   = {CoRR},
  volume    = {abs/2102.00894},
  year      = {2021},
  url       = {https://arxiv.org/abs/2102.00894},
  archivePrefix = {arXiv},
  eprint    = {2102.00894},
  timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org},
  note      = {to appear in EACL2021}
}
```

### Contributions

Thanks to [@pdufter](https://github.com/pdufter) for adding this dataset.