File size: 7,108 Bytes
2f687f5 f1d89f1 2f687f5 f1d89f1 00eb7d5 2f687f5 babc24e 2f687f5 57db7d2 2f687f5 57db7d2 4619cea 86bcf01 6029979 a55b230 2f687f5 4619cea 2f687f5 6029979 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
annotations_creators:
- crowdsourced
- expert-generated
- machine-generated
language_creators:
- crowdsourced
- expert-generated
- machine-generated
language:
- af
- ar
- az
- be
- bg
- bn
- ca
- ceb
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fr
- ga
- gl
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- la
- lt
- lv
- ms
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- ta
- th
- tr
- uk
- ur
- vi
- zh
license:
- cc-by-nc-sa-4.0
multilinguality:
- translation
size_categories:
- 100K<n<1M
source_datasets:
- extended|lama
task_categories:
- question-answering
- text-classification
task_ids:
- open-domain-qa
- text-scoring
paperswithcode_id: null
pretty_name: MLama
tags:
- probing
dataset_info:
features:
- name: uuid
dtype: string
- name: lineid
dtype: uint32
- name: obj_uri
dtype: string
- name: obj_label
dtype: string
- name: sub_uri
dtype: string
- name: sub_label
dtype: string
- name: template
dtype: string
- name: language
dtype: string
- name: predicate_id
dtype: string
config_name: all
splits:
- name: test
num_bytes: 125919995
num_examples: 843143
download_size: 40772287
dataset_size: 125919995
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Multilingual LAMA](http://cistern.cis.lmu.de/mlama/)
- **Repository:** [Github](https://github.com/norakassner/mlama)
- **Paper:** [Arxiv](https://arxiv.org/abs/2102.00894)
- **Point of Contact:** [Contact section](http://cistern.cis.lmu.de/mlama/)
### Dataset Summary
This dataset provides the data for mLAMA, a multilingual version of LAMA.
Regarding LAMA see https://github.com/facebookresearch/LAMA. For mLAMA
the TREx and GoogleRE part of LAMA was considered and machine translated using
Google Translate, and the Wikidata and Google Knowledge Graph API. The machine
translated templates were checked for validity, i.e., whether they contain
exactly one '[X]' and one '[Y]'.
This data can be used for creating fill-in-the-blank queries like
"Paris is the capital of [MASK]" across 53 languages. For more details see
the website http://cistern.cis.lmu.de/mlama/ or the github repo https://github.com/norakassner/mlama.
### Supported Tasks and Leaderboards
Language model knowledge probing.
### Languages
This dataset contains data in 53 languages:
af,ar,az,be,bg,bn,ca,ceb,cs,cy,da,de,el,en,es,et,eu,fa,fi,fr,ga,gl,he,hi,hr,hu,hy,id,it,ja,ka,ko,la,lt,lv,ms,nl,pl,pt,ro,ru,sk,sl,sq,sr,sv,ta,th,tr,uk,ur,vi,zh
## Dataset Structure
For each of the 53 languages and each of the 43 relations/predicates there is a set of triples.
### Data Instances
For each language and relation there are triples, that consists of an object, a predicate and a subject. For each predicate there is a template available. An example for `dataset["test"][0]` is given here:
```python
{
'language': 'af',
'lineid': 0,
'obj_label': 'Frankryk',
'obj_uri': 'Q142',
'predicate_id': 'P1001',
'sub_label': 'President van Frankryk',
'sub_uri': 'Q191954',
'template': "[X] is 'n wettige term in [Y].",
'uuid': '3fe3d4da-9df9-45ba-8109-784ce5fba38a'
}
```
### Data Fields
Each instance has the following fields
* "uuid": a unique identifier
* "lineid": a identifier unique to mlama
* "obj_id": knowledge graph id of the object
* "obj_label": surface form of the object
* "sub_id": knowledge graph id of the subject
* "sub_label": surface form of the subject
* "template": template
* "language": language code
* "predicate_id": relation id
### Data Splits
There is only one partition that is labelled as 'test data'.
## Dataset Creation
### Curation Rationale
The dataset was translated into 53 languages to investigate knowledge in pretrained language models
multilingually.
### Source Data
#### Initial Data Collection and Normalization
The data has several sources:
LAMA (https://github.com/facebookresearch/LAMA) licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
T-REx (https://hadyelsahar.github.io/t-rex/) licensed under Creative Commons Attribution-ShareAlike 4.0 International License
Google-RE (https://github.com/google-research-datasets/relation-extraction-corpus)
Wikidata (https://www.wikidata.org/) licensed under Creative Commons CC0 License and Creative Commons Attribution-ShareAlike License
#### Who are the source language producers?
See links above.
### Annotations
#### Annotation process
Crowdsourced (wikidata) and machine translated.
#### Who are the annotators?
Unknown.
### Personal and Sensitive Information
Names of (most likely) famous people who have entries in Google Knowledge Graph or Wikidata.
## Considerations for Using the Data
Data was created through machine translation and automatic processes.
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
Not all triples are available in all languages.
## Additional Information
### Dataset Curators
The authors of the mLAMA paper and the authors of the original datasets.
### Licensing Information
The Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/
### Citation Information
```
@article{kassner2021multilingual,
author = {Nora Kassner and
Philipp Dufter and
Hinrich Sch{\"{u}}tze},
title = {Multilingual {LAMA:} Investigating Knowledge in Multilingual Pretrained
Language Models},
journal = {CoRR},
volume = {abs/2102.00894},
year = {2021},
url = {https://arxiv.org/abs/2102.00894},
archivePrefix = {arXiv},
eprint = {2102.00894},
timestamp = {Tue, 09 Feb 2021 13:35:56 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2102-00894.bib},
bibsource = {dblp computer science bibliography, https://dblp.org},
note = {to appear in EACL2021}
}
```
### Contributions
Thanks to [@pdufter](https://github.com/pdufter) for adding this dataset. |