Datasets:

ArXiv:
License:
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 3f6a4eb6-0942-484d-b6bd-ea0648759f17)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1729, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1686, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1064, in get_module
                  patterns = get_data_patterns(base_path, download_config=self.download_config)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 501, in get_data_patterns
                  return _get_data_files_patterns(resolver)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 275, in _get_data_files_patterns
                  data_files = pattern_resolver(pattern)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 388, in resolve_pattern
                  for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 408, in glob
                  path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 175, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 121, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2682, in repo_info
                  return method(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2539, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send
                  return super().send(request, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 3f6a4eb6-0942-484d-b6bd-ea0648759f17)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation

arXiv Project Page

Abstract

Despite considerable progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, consisting of 40K frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with diverse lighting conditions. Collected using two 360° cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with a significantly increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a significant challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, achieving improved performance.

Dataset Structure

The dataset is organized into training and testing subsets with the following structure:

helvipad/
├── train/
│   ├── depth_maps                # Depth maps generated from LiDAR data
│   ├── depth_maps_augmented      # Augmented depth maps using depth completion
│   ├── disparity_maps            # Disparity maps computed from depth maps
│   ├── disparity_maps_augmented  # Augmented disparity maps using depth completion
│   ├── images_top                # Top-camera RGB images
│   ├── images_bottom             # Bottom-camera RGB images
│   ├── LiDAR_pcd                 # Original LiDAR point cloud data
├── test/
│   ├── depth_maps                # Depth maps generated from LiDAR data
│   ├── disparity_maps            # Disparity maps computed from depth maps
│   ├── images_top                # Top-camera RGB images
│   ├── images_bottom             # Bottom-camera RGB images
│   ├── LiDAR_pcd                 # Original LiDAR point cloud data

Benchmark

We evaluate the performance of multiple state-of-the-art and popular stereo matching methods, both for standard and 360° images. All models are trained on a single NVIDIA A100 GPU with the largest possible batch size to ensure comparable use of computational resources.

Method Type Disp-MAE (°) Disp-RMSE (°) Disp-MARE Depth-MAE (m) Depth-RMSE (m) Depth-MARE (m)
PSMNet Stereo 0.33 0.54 0.20 2.79 6.17 0.29
360SD-Net 360° Stereo 0.21 0.42 0.18 2.14 5.12 0.15
IGEV-Stereo Stereo 0.22 0.41 0.17 1.85 4.44 0.15
360-IGEV-Stereo 360° Stereo 0.18 0.39 0.15 1.77 4.36 0.14

Project Page

For more information, visualizations, and updates, visit the project page.

Citation

If you use the Helvipad dataset in your research, please cite our paper:

@misc{zayene2024helvipad,
  author        = {Zayene, Mehdi and Endres, Jannik and Havolli, Albias and Corbière, Charles and Cherkaoui, Salim and Ben Ahmed Kontouli, Alexandre and Alahi, Alexandre},
  title         = {Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation},
  year          = {2024},
  eprint        = {2403.16999},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CV}
}

License

This dataset is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Acknowledgments

This work was supported by the EPFL Center for Imaging through a Collaborative Imaging Grant. We thank the VITA lab members for their valuable feedback, which helped to enhance the quality of this manuscript. We also express our gratitude to Dr. Simone Schaub-Meyer and Oliver Hahn for their insightful advice during the project's final stages.

Downloads last month
58