File size: 5,209 Bytes
ab162f6 60f2d7a ab162f6 60f2d7a 82d214b 60f2d7a 82d214b 60f2d7a 9bc99b4 60f2d7a 29bb837 82d214b 2a3e289 82d214b e6a3ac4 82d214b 2a3e289 82d214b 60f2d7a e6a3ac4 943213b e6a3ac4 60f2d7a 82d214b 60f2d7a d6e314c 943213b 60f2d7a 82d214b 60f2d7a 278f0d5 60f2d7a 82d214b 60f2d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
---
pretty_name: Cartoon Set
size_categories:
- 10K<n<100K
task_categories:
- image-classification
license: cc-by-4.0
---
# Dataset Card for Cartoon Set
## Table of Contents
- [Dataset Card for Cartoon Set](#dataset-card-for-cartoon-set)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://google.github.io/cartoonset/
- **Repository:** https://github.com/google/cartoonset/
- **Paper:** XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
![Cartoon Set sample image](https://huggingface.co/datasets/cgarciae/cartoonset/resolve/main/sample.png)
[Cartoon Set](https://google.github.io/cartoonset/) is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork categories, 4 color categories, and 4 proportion categories, with a total of ~10^13 possible combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes.
#### Usage
`cartoonset` provides the images as PNG byte strings, this gives you a bit more flexibility into how to load the data. Here we show 2 ways:
**Using PIL:**
```python
import datasets
from io import BytesIO
from PIL import Image
ds = datasets.load_dataset("cgarciae/cartoonset", "10k")
def process_fn(sample):
img = Image.open(BytesIO(sample["img_bytes"]))
...
return {"img": img}
ds = ds.map(process_fn, remove_columns=["img_bytes"])
```
**Using TensorFlow:**
```python
import datasets
import tensorflow as tf
hfds = datasets.load_dataset("cgarciae/cartoonset", "10k") # or "100k"
ds = tf.data.Dataset.from_generator(
lambda: hfds,
output_signature={
"img_bytes": tf.TensorSpec(shape=(), dtype=tf.string),
},
)
def process_fn(sample):
img = tf.image.decode_png(sample["img_bytes"], channels=3)
...
return {"img": img}
ds = ds.map(process_fn)
```
**Additional features:**
You can also access the features that generated each sample e.g:
```python
ds = datasets.load_dataset("cgarciae/cartoonset", "10k+features") # or "100k+features"
```
Apart from `img_bytes` these configurations add a total of 18 * 2 additional `int` features, these come in `{feature}`, `{feature}_num_categories` pairs where `num_categories` indicates the number of categories for that feature. See [Data Fields](#data-fields) for the complete list of features.
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```
{
'img_bytes': b'0x...',
}
```
### Data Fields
- `img_bytes`: A byte string containing the raw data of a 500x500 PNG image.
If `+features` is appended to the dataset name, the following additional fields are also available:
- `eye_angle`, `eye_angle_num_categories`
- `eye_lashes`, `eye_lashes_num_categories`
- `eye_lid`, `eye_lid_num_categories`
- `chin_length`, `chin_length_num_categories`
- `eyebrow_weight`, `eyebrow_weight_num_categories`
- `eyebrow_shape`, `eyebrow_shape_num_categories`
- `eyebrow_thickness`, `eyebrow_thickness_num_categories`
- `face_shape`, `face_shape_num_categories`
- `facial_hair`, `facial_hair_num_categories`
- `facial_hair_num_categories`, `facial_hair_num_categories`
- `hair`, `hair_num_categories`
- `hair_num_categories`, `hair_num_categories`
- `eye_color`, `eye_color_num_categories`
- `face_color`, `face_color_num_categories`
- `hair_color`, `hair_color_num_categories`
- `glasses`, `glasses_num_categories`
- `glasses_color`, `glasses_color_num_categories`
- `eyes_slant`, `eye_slant_num_categories`
- `eyebrow_width`, `eyebrow_width_num_categories`
- `eye_eyebrow_distance`, `eye_eyebrow_distance_num_categories`
-
### Data Splits
Train
## Dataset Creation
### Licensing Information
This data is licensed by Google LLC under a Creative Commons Attribution 4.0 International License.
### Citation Information
```
@article{DBLP:journals/corr/abs-1711-05139,
author = {Amelie Royer and
Konstantinos Bousmalis and
Stephan Gouws and
Fred Bertsch and
Inbar Mosseri and
Forrester Cole and
Kevin Murphy},
title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},
journal = {CoRR},
volume = {abs/1711.05139},
year = {2017},
url = {http://arxiv.org/abs/1711.05139},
eprinttype = {arXiv},
eprint = {1711.05139},
timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
|