File size: 3,657 Bytes
ab162f6 60f2d7a ab162f6 60f2d7a 82d214b 60f2d7a 82d214b 60f2d7a 9bc99b4 60f2d7a 82d214b 2a3e289 82d214b 2a3e289 82d214b 60f2d7a 82d214b 60f2d7a 82d214b 60f2d7a 82d214b 60f2d7a 278f0d5 60f2d7a 82d214b 60f2d7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
pretty_name: Cartoon Set
size_categories:
- 10K<n<100K
task_categories:
- image-classification
license: cc-by-4.0
---
# Dataset Card for Cartoon Set
## Table of Contents
- [Dataset Card for Cartoon Set](#dataset-card-for-cartoon-set)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Usage](#usage)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://google.github.io/cartoonset/
- **Repository:** https://github.com/google/cartoonset/
- **Paper:** XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
![Cartoon Set sample image](https://huggingface.co/datasets/cgarciae/cartoonset/resolve/main/sample.png)
[Cartoon Set](https://google.github.io/cartoonset/) is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes.
#### Usage
`cartoonset` provides the images as PNG byte strings, this gives you a bit more flexibility into how to load the data. Here we show 2 ways:
**Using PIL:**
```python
import datasets
from io import BytesIO
from PIL import Image
ds = datasets.load_dataset("cgarciae/cartoonset", "10k") # or "100k"
def process_fn(sample):
img = Image.open(BytesIO(sample["img_bytes"]))
...
return {"img": img}
ds = ds.map(process_fn, remove_columns=["img_bytes"])
```
**Using TensorFlow:**
```python
import datasets
import tensorflow as tf
hfds = datasets.load_dataset("cgarciae/cartoonset", "10k") # or "100k"
ds = tf.data.Dataset.from_generator(
lambda: hfds,
output_signature={
"img_bytes": tf.TensorSpec(shape=(), dtype=tf.string),
},
)
def process_fn(sample):
img = tf.image.decode_png(sample["img_bytes"], channels=3)
...
return {"img": img}
ds = ds.map(process_fn)
```
## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```
{
'img_bytes': b'0x...',
}
```
### Data Fields
- img_bytes: A byte string containing the raw data of a 500x500 PNG image.
### Data Splits
Train
## Dataset Creation
### Licensing Information
This data is licensed by Google LLC under a Creative Commons Attribution 4.0 International License.
### Citation Information
```
@article{DBLP:journals/corr/abs-1711-05139,
author = {Amelie Royer and
Konstantinos Bousmalis and
Stephan Gouws and
Fred Bertsch and
Inbar Mosseri and
Forrester Cole and
Kevin Murphy},
title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},
journal = {CoRR},
volume = {abs/1711.05139},
year = {2017},
url = {http://arxiv.org/abs/1711.05139},
eprinttype = {arXiv},
eprint = {1711.05139},
timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
|