Datasets:

Modalities:
Tabular
ArXiv:
Libraries:
Datasets
License:
File size: 3,657 Bytes
ab162f6
60f2d7a
 
 
 
 
ab162f6
 
60f2d7a
 
 
 
 
 
82d214b
60f2d7a
 
 
 
 
 
 
 
 
 
82d214b
60f2d7a
 
 
 
 
9bc99b4
60f2d7a
82d214b
 
 
2a3e289
82d214b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3e289
82d214b
 
 
 
 
60f2d7a
 
 
 
 
 
82d214b
60f2d7a
 
 
82d214b
60f2d7a
82d214b
60f2d7a
 
278f0d5
60f2d7a
 
82d214b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f2d7a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---

pretty_name: Cartoon Set
size_categories:
- 10K<n<100K
task_categories:
- image-classification
license: cc-by-4.0
---

# Dataset Card for Cartoon Set
## Table of Contents
- [Dataset Card for Cartoon Set](#dataset-card-for-cartoon-set)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
      - [Usage](#usage)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://google.github.io/cartoonset/
- **Repository:** https://github.com/google/cartoonset/
- **Paper:** XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary

![Cartoon Set sample image](https://huggingface.co/datasets/cgarciae/cartoonset/resolve/main/sample.png)

[Cartoon Set](https://google.github.io/cartoonset/) is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes.

#### Usage
`cartoonset` provides the images as PNG byte strings, this gives you a bit more flexibility into how to load the data. Here we show 2 ways:

**Using PIL:**
```python

import datasets

from io import BytesIO

from PIL import Image



ds = datasets.load_dataset("cgarciae/cartoonset", "10k") # or "100k"



def process_fn(sample):

    img = Image.open(BytesIO(sample["img_bytes"]))

    ...

    return {"img": img}



ds = ds.map(process_fn, remove_columns=["img_bytes"])

```

**Using TensorFlow:**
```python

import datasets

import tensorflow as tf



hfds = datasets.load_dataset("cgarciae/cartoonset", "10k") # or "100k"



ds = tf.data.Dataset.from_generator(

    lambda: hfds,

    output_signature={

        "img_bytes": tf.TensorSpec(shape=(), dtype=tf.string),

    },

)



def process_fn(sample):

    img = tf.image.decode_png(sample["img_bytes"], channels=3)

    ...

    return {"img": img}



ds = ds.map(process_fn)

```

## Dataset Structure
### Data Instances
A sample from the training set is provided below:
```

{

  'img_bytes': b'0x...',

}

```
### Data Fields
- img_bytes: A byte string containing the raw data of a 500x500 PNG image.

### Data Splits

Train

## Dataset Creation

### Licensing Information

This data is licensed by Google LLC under a Creative Commons Attribution 4.0 International License.

### Citation Information

```

@article{DBLP:journals/corr/abs-1711-05139,

  author    = {Amelie Royer and

               Konstantinos Bousmalis and

               Stephan Gouws and

               Fred Bertsch and

               Inbar Mosseri and

               Forrester Cole and

               Kevin Murphy},

  title     = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},

  journal   = {CoRR},

  volume    = {abs/1711.05139},

  year      = {2017},

  url       = {http://arxiv.org/abs/1711.05139},

  eprinttype = {arXiv},

  eprint    = {1711.05139},

  timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},

  biburl    = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},

  bibsource = {dblp computer science bibliography, https://dblp.org}

}

```

### Contributions