Datasets:

Languages:
Hindi
ArXiv:
License:
File size: 7,060 Bytes
b5be68e
1c51237
 
 
 
c77652e
e9b4d6d
 
1c51237
 
c274a48
1c51237
 
 
 
 
 
 
 
 
b5be68e
1c51237
444da27
105349d
1c51237
 
744eda2
 
 
1c51237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f1904
c274a48
1c51237
 
 
 
 
 
b3f133e
 
1c51237
 
 
 
 
 
 
 
 
 
 
 
2f8ec0c
1c51237
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe01f1
 
05f1904
9fe01f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da60072
 
 
 
 
 
1c51237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f1904
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- hi
license: "cc-by-sa-4.0"
multilinguality:
- monolingual
paperswithcode_id: hiner-collapsed-1
pretty_name: HiNER - Large Hindi Named Entity Recognition dataset
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
---

<p align="center"><img src="https://huggingface.co/datasets/cfilt/HiNER-collapsed/raw/main/cfilt-dark-vec.png" alt="Computation for Indian Language Technology Logo" width="150" height="150"/></p>

# Dataset Card for HiNER-original

[![Twitter Follow](https://img.shields.io/twitter/follow/cfiltnlp?color=1DA1F2&logo=twitter&style=flat-square)](https://twitter.com/cfiltnlp)
[![Twitter Follow](https://img.shields.io/twitter/follow/PeopleCentredAI?color=1DA1F2&logo=twitter&style=flat-square)](https://twitter.com/PeopleCentredAI)

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://github.com/cfiltnlp/HiNER
- **Repository:** https://github.com/cfiltnlp/HiNER
- **Paper:** https://arxiv.org/abs/2204.13743
- **Leaderboard:** https://paperswithcode.com/sota/named-entity-recognition-on-hiner-collapsed
- **Point of Contact:** Rudra Murthy V

### Dataset Summary

This dataset was created for the fundamental NLP task of Named Entity Recognition for the Hindi language at CFILT Lab, IIT Bombay. We gathered the dataset from various government information webpages and manually annotated these sentences as a part of our data collection strategy. 

**Note:** The dataset contains sentences from ILCI and other sources. ILCI dataset requires license from Indian Language Consortium due to which we do not distribute the ILCI portion of the data. Please send us a mail with proof of ILCI data acquisition to obtain the full dataset.

### Supported Tasks and Leaderboards

Named Entity Recognition

### Languages

Hindi

## Dataset Structure

### Data Instances

{'id': '0', 'tokens': ['प्राचीन', 'समय', 'में', 'उड़ीसा', 'को', 'कलिंग', 'के', 'नाम', 'से', 'जाना', 'जाता', 'था', '।'], 'ner_tags': [0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0]}

### Data Fields

- `id`: The ID value of the data point.
- `tokens`: Raw tokens in the dataset.
- `ner_tags`: the NER tags for this dataset. 

### Data Splits

|                  | Train  | Valid | Test |
| -----            | ------ | ----- | ---- |
| original         | 76025 |  10861 | 21722|
| collapsed        | 76025 |  10861 | 21722|

## About

This repository contains the Hindi Named Entity Recognition dataset (HiNER) published at the Langauge Resources and Evaluation conference (LREC) in 2022. A pre-print via arXiv is available [here](https://arxiv.org/abs/2204.13743).

### Recent Updates
* Version 0.0.5: HiNER initial release

## Usage

You should have the 'datasets' packages installed to be able to use the :rocket: HuggingFace datasets repository. Please use the following command and install via pip:

```code
    pip install datasets
```

To use the original dataset with all the tags, please use:<br/>

```python
    from datasets import load_dataset
    hiner = load_dataset('cfilt/HiNER-original')
```

To use the collapsed dataset with only PER, LOC, and ORG tags, please use:<br/>

```python
    from datasets import load_dataset
    hiner = load_dataset('cfilt/HiNER-collapsed')
```
However, the CoNLL format dataset files can also be found on this Git repository under the [data](data/) folder.

## Model(s)

Our best performing models are hosted on the HuggingFace models repository:
1. [HiNER-Collapsed-XLM-R](https://huggingface.co/cfilt/HiNER-Collapse-XLM-Roberta-Large)
2. [HiNER-Original-XLM-R](https://huggingface.co/cfilt/HiNER-Original-XLM-Roberta-Large)

## Dataset Creation

### Curation Rationale

HiNER was built on data extracted from various government websites handled by the Government of India which provide information in Hindi. This dataset was built for the task of Named Entity Recognition. The dataset was introduced to introduce new resources to the Hindi language that was under-served for Natural Language Processing.

### Source Data

#### Initial Data Collection and Normalization

HiNER was built on data extracted from various government websites handled by the Government of India which provide information in Hindi

#### Who are the source language producers?

Various Government of India webpages

### Annotations

#### Annotation process

This dataset was manually annotated by a single annotator of a long span of time. 

#### Who are the annotators?

Pallab Bhattacharjee

### Personal and Sensitive Information

We ensured that there was no sensitive information present in the dataset. All the data points are curated from publicly available information.

## Considerations for Using the Data

### Social Impact of Dataset

The purpose of this dataset is to provide a large Hindi Named Entity Recognition dataset. Since the information (data points) has been obtained from public resources, we do not think there is a negative social impact in releasing this data. 

### Discussion of Biases

Any biases contained in the data released by the Indian government are bound to be present in our data. 

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

Pallab Bhattacharjee

### Licensing Information

CC-BY-SA 4.0

### Citation Information

```latex
@misc{https://doi.org/10.48550/arxiv.2204.13743,
  doi = {10.48550/ARXIV.2204.13743},
  url = {https://arxiv.org/abs/2204.13743},
  author = {Murthy, Rudra and Bhattacharjee, Pallab and Sharnagat, Rahul and Khatri, Jyotsana and Kanojia, Diptesh and Bhattacharyya, Pushpak},
  keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {HiNER: A Large Hindi Named Entity Recognition Dataset},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}
```