File size: 6,420 Bytes
2912382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from collections import defaultdict
import os
import json
import csv

import datasets

_NAME="prueba"
_VERSION="1.0.0"

_DESCRIPTION = """
An extremely small corpus of 40 audio files taken from Common Voice (es) with the objective of testing how to share datasets in Hugging Face.
"""

_CITATION = """
@misc{toy_corpus_asr_es,
      title={Toy Corpus for ASR in Spanish.}, 
      author={Hernandez Mena, Carlos Daniel},
      year={2022},
      url={https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es},
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es"

_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"
_METADATA_TRAIN =  os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
_METADATA_TEST  =  os.path.join(_BASE_DATA_DIR,"files", "metadata_test.tsv")
_METADATA_DEV   =  os.path.join(_BASE_DATA_DIR,"files",  "metadata_dev.tsv")

_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
_TARS_TEST  = os.path.join(_BASE_DATA_DIR,"files", "tars_test.paths")
_TARS_DEV   = os.path.join(_BASE_DATA_DIR,"files",  "tars_dev.paths")

class ToyCorpusAsrEsConfig(datasets.BuilderConfig):
    """BuilderConfig for Toy Corpus ASR ES."""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class ToyCorpusAsrEs(datasets.GeneratorBasedBuilder):
    """The Toy Corpus ASR ES dataset."""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        ToyCorpusAsrEsConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio_id": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16000),
                "split": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "normalized_text": datasets.Value("string"),
                "relative_path": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
    
        metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
        metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
        metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)   
        
        tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
        tars_test=dl_manager.download_and_extract(_TARS_TEST)
        tars_dev=dl_manager.download_and_extract(_TARS_DEV)
        
        hash_tar_files=defaultdict(dict)
        with open(tars_train,'r') as f:
            hash_tar_files['train']=[path.replace('\n','') for path in f]

        with open(tars_test,'r') as f:
            hash_tar_files['test']=[path.replace('\n','') for path in f]
            
        with open(tars_dev,'r') as f:
            hash_tar_files['dev']=[path.replace('\n','') for path in f]
    
        hash_meta_paths={"train":metadata_train,"test":metadata_test,"dev":metadata_dev}
        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["train","dev","test"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )                                                                                                            
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": hash_meta_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
                    "metadata_paths": hash_meta_paths["dev"],
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["test"],
                    "metadata_paths": hash_meta_paths["test"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):

        features = ["normalized_text","gender","split","relative_path"]
        
        with open(metadata_paths) as f:
            metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                yield audio_id, {
                    "audio_id": audio_id,
                    **{feature: metadata[audio_id][feature] for feature in features},
                    "audio": {"path": path, "bytes": audio_file.read()},
                }