File size: 6,420 Bytes
2912382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from collections import defaultdict
import os
import json
import csv
import datasets
_NAME="prueba"
_VERSION="1.0.0"
_DESCRIPTION = """
An extremely small corpus of 40 audio files taken from Common Voice (es) with the objective of testing how to share datasets in Hugging Face.
"""
_CITATION = """
@misc{toy_corpus_asr_es,
title={Toy Corpus for ASR in Spanish.},
author={Hernandez Mena, Carlos Daniel},
year={2022},
url={https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es},
}
"""
_HOMEPAGE = "https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es"
_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"
_BASE_DATA_DIR = "corpus/"
_METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
_METADATA_TEST = os.path.join(_BASE_DATA_DIR,"files", "metadata_test.tsv")
_METADATA_DEV = os.path.join(_BASE_DATA_DIR,"files", "metadata_dev.tsv")
_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
_TARS_TEST = os.path.join(_BASE_DATA_DIR,"files", "tars_test.paths")
_TARS_DEV = os.path.join(_BASE_DATA_DIR,"files", "tars_dev.paths")
class ToyCorpusAsrEsConfig(datasets.BuilderConfig):
"""BuilderConfig for Toy Corpus ASR ES."""
def __init__(self, name, **kwargs):
name=_NAME
super().__init__(name=name, **kwargs)
class ToyCorpusAsrEs(datasets.GeneratorBasedBuilder):
"""The Toy Corpus ASR ES dataset."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
ToyCorpusAsrEsConfig(
name=_NAME,
version=datasets.Version(_VERSION),
)
]
def _info(self):
features = datasets.Features(
{
"audio_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16000),
"split": datasets.Value("string"),
"gender": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"relative_path": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)
tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
tars_test=dl_manager.download_and_extract(_TARS_TEST)
tars_dev=dl_manager.download_and_extract(_TARS_DEV)
hash_tar_files=defaultdict(dict)
with open(tars_train,'r') as f:
hash_tar_files['train']=[path.replace('\n','') for path in f]
with open(tars_test,'r') as f:
hash_tar_files['test']=[path.replace('\n','') for path in f]
with open(tars_dev,'r') as f:
hash_tar_files['dev']=[path.replace('\n','') for path in f]
hash_meta_paths={"train":metadata_train,"test":metadata_test,"dev":metadata_dev}
audio_paths = dl_manager.download(hash_tar_files)
splits=["train","dev","test"]
local_extracted_audio_paths = (
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
{
split:[None] * len(audio_paths[split]) for split in splits
}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
"local_extracted_archives_paths": local_extracted_audio_paths["train"],
"metadata_paths": hash_meta_paths["train"],
}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
"local_extracted_archives_paths": local_extracted_audio_paths["dev"],
"metadata_paths": hash_meta_paths["dev"],
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
"local_extracted_archives_paths": local_extracted_audio_paths["test"],
"metadata_paths": hash_meta_paths["test"],
}
),
]
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
features = ["normalized_text","gender","split","relative_path"]
with open(metadata_paths) as f:
metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
for audio_filename, audio_file in audio_archive:
audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
yield audio_id, {
"audio_id": audio_id,
**{feature: metadata[audio_id][feature] for feature in features},
"audio": {"path": path, "bytes": audio_file.read()},
}
|