File size: 5,635 Bytes
124701c
 
c0464cb
124701c
 
 
 
 
5c9e80e
124701c
 
5c9e80e
124701c
 
 
 
 
1352c88
5c9e80e
124701c
 
 
c0464cb
124701c
 
c0464cb
124701c
 
 
c0464cb
 
124701c
 
 
 
 
c0464cb
5c9e80e
c0464cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9e80e
c0464cb
 
 
 
 
 
 
 
124701c
 
 
 
 
 
 
 
1352c88
124701c
 
 
 
 
 
1352c88
124701c
 
1352c88
124701c
 
 
 
 
 
 
 
 
c0464cb
 
124701c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0464cb
5c9e80e
c0464cb
 
 
 
124701c
 
 
 
 
 
 
c0464cb
 
124701c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0464cb
5c9e80e
c0464cb
124701c
c0464cb
124701c
 
 
 
c0464cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124701c
 
 
c0464cb
124701c
 
 
 
1352c88
c0464cb
1352c88
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Cannabis Licenses
Copyright (c) 2022-2023 Cannlytics

Authors:
    Keegan Skeate <https://github.com/keeganskeate>
    Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 9/30/2023
License: <https://huggingface.co/datasets/cannlytics/cannabis_licenses/blob/main/LICENSE>
"""
# External imports:
import datasets
import pandas as pd


# Constants.
_SCRIPT = 'cannabis_licenses.py'
_VERSION = '1.0.2'
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_licenses'
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
_DESCRIPTION = """\
Cannabis Licenses is a dataset of curated cannabis license data. The dataset consists of sub-datasets for each state with permitted adult-use cannabis, as well as a sub-dataset that includes all licenses.
"""
_CITATION = """\
@inproceedings{cannlytics2023cannabis_licenses,
  author    = {Skeate, Keegan and O'Sullivan-Sutherland, Candace},
  title     = {Cannabis Licenses},
  booktitle = {Cannabis Data Science},
  month     = {August},
  year      = {2023},
  address   = {United States of America},
  publisher = {Cannlytics}
}
"""


# Define subsets.
SUBSETS = [
    'all',
    'ak',
    'az',
    'ca',
    'co',
    'ct',
    'il',
    'ma',
    'md',
    'me',
    'mi',
    'mo',
    'mt',
    'nj',
    'nm',
    'ny',
    'nv',
    'or',
    'ri',
    'vt',
    'wa',
]


# Dataset fields.
FIELDS = datasets.Features({
    'id': datasets.Value(dtype='string'),
    'license_number': datasets.Value(dtype='string'),
    'license_status': datasets.Value(dtype='string'),
    'license_status_date': datasets.Value(dtype='string'),
    'license_term': datasets.Value(dtype='string'),
    'license_type': datasets.Value(dtype='string'),
    'license_designation': datasets.Value(dtype='string'),
    'issue_date': datasets.Value(dtype='string'),
    'expiration_date': datasets.Value(dtype='string'),
    'licensing_authority_id': datasets.Value(dtype='string'),
    'licensing_authority': datasets.Value(dtype='string'),
    'business_legal_name': datasets.Value(dtype='string'),
    'business_dba_name': datasets.Value(dtype='string'),
    'business_image_url': datasets.Value(dtype='string'),
    'business_owner_name': datasets.Value(dtype='string'),
    'business_structure': datasets.Value(dtype='string'),
    'business_website': datasets.Value(dtype='string'),
    'activity': datasets.Value(dtype='string'),
    'premise_street_address': datasets.Value(dtype='string'),
    'premise_city': datasets.Value(dtype='string'),
    'premise_state': datasets.Value(dtype='string'),
    'premise_county': datasets.Value(dtype='string'),
    'premise_zip_code': datasets.Value(dtype='string'),
    'business_email': datasets.Value(dtype='string'),
    'business_phone': datasets.Value(dtype='string'),
    'parcel_number': datasets.Value(dtype='string'),
    'premise_latitude': datasets.Value(dtype='string'),
    'premise_longitude': datasets.Value(dtype='string'),
    'data_refreshed_date': datasets.Value(dtype='string'),
})


class CannabisLicensesConfig(datasets.BuilderConfig):
    """BuilderConfig for Cannabis Licenses."""

    def __init__(self, name, **kwargs):
        """BuilderConfig for Cannabis Licenses.
        Args:
            name (str): Configuration name that determines setup.
            **kwargs: Keyword arguments forwarded to super.
        """
        description = _DESCRIPTION
        description += f'This configuration is for the `{name}` subset.'
        super().__init__(
            data_dir='data',
            description=description,
            name=name,
            **kwargs,
        )


class CannabisLicenses(datasets.GeneratorBasedBuilder):
    """The Cannabis Licenses dataset."""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIG_CLASS = CannabisLicensesConfig
    BUILDER_CONFIGS = [CannabisLicensesConfig(s) for s in SUBSETS]
    DEFAULT_CONFIG_NAME = 'all'

    def _info(self):
        """Returns the dataset metadata."""
        return datasets.DatasetInfo(
            features=FIELDS,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            description=_DESCRIPTION,
            license=_LICENSE,
            version=_VERSION,
        )
    
    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        subset = self.config.name
        data_url = f'data/{subset}/licenses-{subset}-latest.csv'
        urls = {subset: data_url}
        downloaded_files = dl_manager.download_and_extract(urls)
        params = {'filepath': downloaded_files[subset]}
        return [datasets.SplitGenerator(name='data', gen_kwargs=params)]
    
    def _generate_examples(self, filepath):
        """Returns the examples in raw text form."""
        # Read the data.
        df = pd.read_csv(filepath)

        # Add missing columns.
        for col in FIELDS.keys():
            if col not in df.columns:
                df[col] = ''

        # Keep only the feature columns.
        df = df[list(FIELDS.keys())]

        # Fill missing values.
        df.fillna('', inplace=True)

        # Return the data as a dictionary.
        for index, row in df.iterrows():
            obs = row.to_dict()
            yield index, obs


# === Test ===
# [✓] Tested: 2023-09-19 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':

    from datasets import load_dataset

    # Load each dataset subset.
    for subset in SUBSETS:
        dataset = load_dataset(_SCRIPT, subset)
        data = dataset['data']
        assert len(data) > 0
        print('Read %i %s data points.' % (len(data), subset))