File size: 5,635 Bytes
124701c c0464cb 124701c 5c9e80e 124701c 5c9e80e 124701c 1352c88 5c9e80e 124701c c0464cb 124701c c0464cb 124701c c0464cb 124701c c0464cb 5c9e80e c0464cb 5c9e80e c0464cb 124701c 1352c88 124701c 1352c88 124701c 1352c88 124701c c0464cb 124701c c0464cb 5c9e80e c0464cb 124701c c0464cb 124701c c0464cb 5c9e80e c0464cb 124701c c0464cb 124701c c0464cb 124701c c0464cb 124701c 1352c88 c0464cb 1352c88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
"""
Cannabis Licenses
Copyright (c) 2022-2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 9/30/2023
License: <https://huggingface.co/datasets/cannlytics/cannabis_licenses/blob/main/LICENSE>
"""
# External imports:
import datasets
import pandas as pd
# Constants.
_SCRIPT = 'cannabis_licenses.py'
_VERSION = '1.0.2'
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_licenses'
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
_DESCRIPTION = """\
Cannabis Licenses is a dataset of curated cannabis license data. The dataset consists of sub-datasets for each state with permitted adult-use cannabis, as well as a sub-dataset that includes all licenses.
"""
_CITATION = """\
@inproceedings{cannlytics2023cannabis_licenses,
author = {Skeate, Keegan and O'Sullivan-Sutherland, Candace},
title = {Cannabis Licenses},
booktitle = {Cannabis Data Science},
month = {August},
year = {2023},
address = {United States of America},
publisher = {Cannlytics}
}
"""
# Define subsets.
SUBSETS = [
'all',
'ak',
'az',
'ca',
'co',
'ct',
'il',
'ma',
'md',
'me',
'mi',
'mo',
'mt',
'nj',
'nm',
'ny',
'nv',
'or',
'ri',
'vt',
'wa',
]
# Dataset fields.
FIELDS = datasets.Features({
'id': datasets.Value(dtype='string'),
'license_number': datasets.Value(dtype='string'),
'license_status': datasets.Value(dtype='string'),
'license_status_date': datasets.Value(dtype='string'),
'license_term': datasets.Value(dtype='string'),
'license_type': datasets.Value(dtype='string'),
'license_designation': datasets.Value(dtype='string'),
'issue_date': datasets.Value(dtype='string'),
'expiration_date': datasets.Value(dtype='string'),
'licensing_authority_id': datasets.Value(dtype='string'),
'licensing_authority': datasets.Value(dtype='string'),
'business_legal_name': datasets.Value(dtype='string'),
'business_dba_name': datasets.Value(dtype='string'),
'business_image_url': datasets.Value(dtype='string'),
'business_owner_name': datasets.Value(dtype='string'),
'business_structure': datasets.Value(dtype='string'),
'business_website': datasets.Value(dtype='string'),
'activity': datasets.Value(dtype='string'),
'premise_street_address': datasets.Value(dtype='string'),
'premise_city': datasets.Value(dtype='string'),
'premise_state': datasets.Value(dtype='string'),
'premise_county': datasets.Value(dtype='string'),
'premise_zip_code': datasets.Value(dtype='string'),
'business_email': datasets.Value(dtype='string'),
'business_phone': datasets.Value(dtype='string'),
'parcel_number': datasets.Value(dtype='string'),
'premise_latitude': datasets.Value(dtype='string'),
'premise_longitude': datasets.Value(dtype='string'),
'data_refreshed_date': datasets.Value(dtype='string'),
})
class CannabisLicensesConfig(datasets.BuilderConfig):
"""BuilderConfig for Cannabis Licenses."""
def __init__(self, name, **kwargs):
"""BuilderConfig for Cannabis Licenses.
Args:
name (str): Configuration name that determines setup.
**kwargs: Keyword arguments forwarded to super.
"""
description = _DESCRIPTION
description += f'This configuration is for the `{name}` subset.'
super().__init__(
data_dir='data',
description=description,
name=name,
**kwargs,
)
class CannabisLicenses(datasets.GeneratorBasedBuilder):
"""The Cannabis Licenses dataset."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIG_CLASS = CannabisLicensesConfig
BUILDER_CONFIGS = [CannabisLicensesConfig(s) for s in SUBSETS]
DEFAULT_CONFIG_NAME = 'all'
def _info(self):
"""Returns the dataset metadata."""
return datasets.DatasetInfo(
features=FIELDS,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
description=_DESCRIPTION,
license=_LICENSE,
version=_VERSION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
subset = self.config.name
data_url = f'data/{subset}/licenses-{subset}-latest.csv'
urls = {subset: data_url}
downloaded_files = dl_manager.download_and_extract(urls)
params = {'filepath': downloaded_files[subset]}
return [datasets.SplitGenerator(name='data', gen_kwargs=params)]
def _generate_examples(self, filepath):
"""Returns the examples in raw text form."""
# Read the data.
df = pd.read_csv(filepath)
# Add missing columns.
for col in FIELDS.keys():
if col not in df.columns:
df[col] = ''
# Keep only the feature columns.
df = df[list(FIELDS.keys())]
# Fill missing values.
df.fillna('', inplace=True)
# Return the data as a dictionary.
for index, row in df.iterrows():
obs = row.to_dict()
yield index, obs
# === Test ===
# [✓] Tested: 2023-09-19 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
from datasets import load_dataset
# Load each dataset subset.
for subset in SUBSETS:
dataset = load_dataset(_SCRIPT, subset)
data = dataset['data']
assert len(data) > 0
print('Read %i %s data points.' % (len(data), subset))
|