File size: 4,020 Bytes
124701c c0464cb 124701c c0464cb 124701c 1352c88 c0464cb 124701c c0464cb 124701c c0464cb 124701c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
"""
Cannabis Licenses | Get New Jersey Licenses
Copyright (c) 2022 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/29/2022
Updated: 8/17/2023
License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
Description:
Collect New Jersey cannabis license data.
Data Source:
- New Jersey Cannabis Regulatory Commission
URL: <https://data.nj.gov/stories/s/ggm4-mprw>
"""
# Standard imports.
from datetime import datetime
import os
from typing import Optional
# External imports.
import pandas as pd
import requests
# Specify where your data lives.
DATA_DIR = '../data/nj'
# Specify state-specific constants.
STATE = 'NJ'
NEW_JERSEY = {
'licensing_authority_id': 'NJCRC',
'licensing_authority': 'New Jersey Cannabis Regulatory Commission',
'retailers': {
'columns': {
'name': 'business_dba_name',
'address': 'premise_street_address',
'town': 'premise_city',
'state': 'premise_state',
'zip_code': 'premise_zip_code',
'county': 'premise_county',
'phone_number': 'business_phone',
'type': 'license_type',
}
}
}
def get_licenses_nj(
data_dir: Optional[str] = None,
**kwargs,
):
"""Get New Jersey cannabis license data."""
# Get retailer data.
url = 'https://data.nj.gov/resource/nv37-s2zn.json'
response = requests.get(url)
data = pd.DataFrame(response.json())
# Parse the website.
data['business_website'] = data['website'].apply(lambda x: x['url'])
# Parse the GIS coordinates.
data['premise_longitude'] = data['dispensary_location'].apply(
lambda x: x['coordinates'][0]
)
data['premise_latitude'] = data['dispensary_location'].apply(
lambda x: x['coordinates'][1]
)
# Standardize the data.
timestamp = datetime.now().isoformat()
drop_cols = ['dispensary_location', 'location', 'website']
data.drop(columns=drop_cols, inplace=True)
data.rename(columns=NEW_JERSEY['retailers']['columns'], inplace=True)
data['business_legal_name'] = data['business_dba_name']
data['licensing_authority_id'] = NEW_JERSEY['licensing_authority_id']
data['licensing_authority'] = NEW_JERSEY['licensing_authority']
data['license_designation'] = 'Adult-Use'
data['premise_state'] = STATE
data['license_status_date'] = None
data['license_term'] = None
data['issue_date'] = None
data['expiration_date'] = None
data['business_owner_name'] = None
data['business_structure'] = None
data['business_email'] = None
data['activity'] = None
data['parcel_number'] = None
data['business_image_url'] = None
data['id'] = None
data['license_number'] = None
data['license_status'] = None
data['data_refreshed_date'] = timestamp
# Convert certain columns from upper case title case.
cols = ['premise_city', 'premise_county', 'premise_street_address']
for col in cols:
data[col] = data[col].apply(lambda x: x.title().strip())
# Save and return the data.
if data_dir is not None:
if not os.path.exists(data_dir): os.makedirs(data_dir)
date = timestamp[:10]
data.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{date}.csv', index=False)
data.to_csv(f'{data_dir}/licenses-{STATE.lower()}-latest.csv', index=False)
return data
# === Test ===
# [✓] Tested: 2023-08-13 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Support command line usage.
import argparse
try:
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--d', '--data_dir', dest='data_dir', type=str)
args = arg_parser.parse_args()
except SystemExit:
args = {'d': DATA_DIR}
# Get licenses, saving them to the specified directory.
data_dir = args.get('d', args.get('data_dir'))
data = get_licenses_nj(data_dir)
|