Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K<n<100K
License:
File size: 4,719 Bytes
30228f0 758a1c3 30228f0 453edc3 30228f0 758a1c3 30228f0 1814cf0 30228f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""LINNAEUS: A species name identification system for biomedical literature"""
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{gerner2010linnaeus,
title={LINNAEUS: a species name identification system for biomedical literature},
author={Gerner, Martin and Nenadic, Goran and Bergman, Casey M},
journal={BMC bioinformatics},
volume={11},
number={1},
pages={85},
year={2010},
publisher={Springer}
}
"""
_DESCRIPTION = """\
A novel corpus of full-text documents manually annotated for species mentions.
"""
_HOMEPAGE = "http://linnaeus.sourceforge.net/"
_URL = "https://drive.google.com/u/0/uc?id=1OletxmPYNkz2ltOr9pyT0b0iBtUWxslh&export=download"
_BIOBERT_NER_DATASET_DIRECTORY = "linnaeus"
_TRAINING_FILE = "train.tsv"
_DEV_FILE = "devel.tsv"
_TEST_FILE = "test.tsv"
class LinnaeusConfig(datasets.BuilderConfig):
"""BuilderConfig for Linnaeus"""
def __init__(self, **kwargs):
"""BuilderConfig for Linnaeus.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LinnaeusConfig, self).__init__(**kwargs)
class Linnaeus(datasets.GeneratorBasedBuilder):
"""Linnaeus dataset."""
BUILDER_CONFIGS = [
LinnaeusConfig(name="linnaeus", version=datasets.Version("1.0.0"), description="Linnaeus dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B",
"I",
]
)
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"biobert_ner_datasets": _URL,
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
dataset_directory = os.path.join(downloaded_files["biobert_ner_datasets"], _BIOBERT_NER_DATASET_DIRECTORY)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dataset_directory, _TRAINING_FILE)}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dataset_directory, _DEV_FILE)}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dataset_directory, _TEST_FILE)}
),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# tokens are tab separated
splits = line.split("\t")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
|