Datasets:

Languages:
English
License:
File size: 5,492 Bytes
30228f0
 
 
 
 
07790d4
30228f0
07790d4
30228f0
 
 
 
 
 
 
 
4b205bb
30228f0
 
1e4e4dc
453edc3
2db303e
 
 
 
 
 
 
 
 
 
f5faac4
 
 
2db303e
 
 
 
 
 
 
 
162fb37
 
 
2db303e
 
30228f0
 
 
 
 
1e4e4dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30228f0
 
 
 
 
 
 
 
 
 
 
453edc3
30228f0
 
 
453edc3
30228f0
 
 
453edc3
30228f0
 
 
 
 
453edc3
 
 
 
 
 
 
30228f0
 
 
 
 
 
 
 
 
453edc3
 
 
 
30228f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453edc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d39792
 
2db303e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: linnaeus
pretty_name: LINNAEUS
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B
          '2': I
  config_name: linnaeus
  splits:
  - name: train
    num_bytes: 4772417
    num_examples: 11936
  - name: validation
    num_bytes: 1592823
    num_examples: 4079
  - name: test
    num_bytes: 2802877
    num_examples: 7143
  download_size: 18204624
  dataset_size: 9168117
---

# Dataset Card for [Dataset Name]

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [linnaeus](http://linnaeus.sourceforge.net/)
- **Repository:**
- **Paper:** [BMC Bioinformatics](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

LINNAEUS is a general-purpose dictionary matching software, capable of processing multiple types of document formats in the biomedical domain (MEDLINE, PMC, BMC, OTMI, text, etc.). It can produce multiple types of output (XML, HTML, tab-separated-value file, or save to a database). It also contains methods for acting as a server (including load balancing across several servers), allowing clients to request matching over a network. A package with files for recognizing and identifying species names is available for LINNAEUS, showing 94% recall and 97% precision compared to LINNAEUS-species-corpus.

### Supported Tasks and Leaderboards

This dataset is used for species Named Entity Recognition.

### Languages

The dataset is in English.

## Dataset Structure

### Data Instances

An example from the dataset is:

```
{'id': '2',
'tokens': ['Scp160p', 'is', 'a', '160', 'kDa', 'protein', 'in', 'the', 'yeast', 'Saccharomyces', 'cerevisiae', 'that', 'contains', '14', 'repeats', 'of', 'the', 'hnRNP', 'K', '-', 'homology', '(', 'KH', ')', 'domain', ',', 'and', 'demonstrates', 'significant', 'sequence', 'homology', 'to', 'a', 'family', 'of', 'proteins', 'collectively', 'known', 'as', 'vigilins', '.'],
'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}
```

### Data Fields

- `id`: Sentence identifier.  
- `tokens`: Array of tokens composing a sentence.  
- `ner_tags`: Array of tags, where `0` indicates no species mentioned, `1` signals the first token of a species and `2` the subsequent tokens of the species.  

### Data Splits


|   name   |train|validation|test|
|----------|----:|---------:|---:|
| linnaeus |11936|      4079|7143|

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```bibtex
@article{Gerner2010,
abstract = {The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles.},
author = {Gerner, Martin and Nenadic, Goran and Bergman, Casey M},
doi = {10.1186/1471-2105-11-85},
issn = {1471-2105},
journal = {BMC Bioinformatics},
number = {1},
pages = {85},
title = {{LINNAEUS: A species name identification system for biomedical literature}},
url = {https://doi.org/10.1186/1471-2105-11-85},
volume = {11},
year = {2010}
}
```

### Contributions

Thanks to [@edugp](https://github.com/edugp) for adding this dataset.