File size: 9,550 Bytes
6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd 6631fbc 696a5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import datasets
from typing import List
_DESCRIPTION = """\
Dataset for the BabyLM Round2: French, German, Chinese & Japanese Small-Scale LMs
The goal is to train a language model from scratch on this data which represents
roughly the amount of text and speech data a young child observes.
Author– Suchir Salhan
"""
filenames = [
"aochildes.txt",
"aochinese.txt",
"aochinese_dev.txt",
"aochinese_test.txt",
"aofrench.txt",
"aofrench_dev.txt",
"aofrench_test.txt",
"aogerman.txt",
"aogerman_dev.txt",
"aogerman_test.txt",
"aojapanese.txt",
"aojapanese_dev.txt",
"aojapanese_test.txt",
"bnc_spoken.txt",
"cbt.txt",
"children_stories.txt",
"gutenberg.txt",
"open_subtitles.txt",
"qed.txt",
"simple_wikipedia.txt",
"switchboard.txt",
"wikipedia.txt"
]
#Suchir Salhan– addition of French, German, Japanese and Chinese dataset BUILDER_CONFIGS
class BabyLM(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="original_strict_small",
description="Original dataset, 10M words, no POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_small",
description="Cleaned version of the dataset, 10M words, no POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict",
description="Original dataset, 100M words, no POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict",
description="Cleaned version of the dataset, 100M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict_small_gold",
description="Original dataset, 10M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_small_gold",
description="Cleaned version of the dataset, 10M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="original_strict_gold",
description="Original dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="strict_gold",
description="Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="fr_lang_strict_small", #FRENCH
description="FRENCH Cleaned version of the dataset, 10M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="ja_lang_strict_small",
description="GERMAN Cleaned version of the dataset, 10M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="zh_lang_strict_small",
description="JAPANESE Cleaned version of the dataset, 10M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="de_lang_strict_small",
description="GERMAN Cleaned version of the dataset, 10M words, unsupervised POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="fr_lang_strict_gold",
description="FRENCH Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="ja_lang_strict_gold",
description="JAPANESE Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="de_lang_strict_gold",
description="GERMAN Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
datasets.BuilderConfig(
name="zh_lang_strict_gold",
description="CHINESE Cleaned version of the dataset, 100M words, gold POS tags",
version="1.0.0",
),
]
DEFAULT_CONFIG_NAME = "strict_small"
def _info(self):
features = datasets.Features(
{
"text": datasets.Value("string"),
"tagged_text": datasets.Value("string"),
"filename": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=features, # Here we define them above because they are different between the two configurations
homepage=_HOMEPAGE,
)
#Suchir Salhan– addition of French, German, Japanese and Chinese datasets
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns data for different splits
"""
if "strict_small" in self.config.name: #default settings – English
train_data_dir = "10M"
elif "fr_lang_strict_small" in self.config.name:
train_data_dir = "FR"
elif "de_lang_strict_small" in self.config.name:
train_data_dir = "DE"
elif "zh_lang_strict_small" in self.config.name:
train_data_dir = "ZH"
elif "ja_lang_strict_small" in self.config.name:
train_data_dir = "JA"
else:
train_data_dir = "100M"
folder = 'original_tagged' if 'original' in self.config.name else 'clean_tagged' #
folder = folder + '_gold' if 'gold' in self.config.name else folder #gold tags for french, german, japanese and english
#modified urls to download
urls_to_download = {
"train": [],
"dev": [],
"test": []
}
if 'fr_lang_strict_small' in self.config.name:
urls_to_download["train"].append(f"{folder}/{train_data_dir}/aofrench.txt")
urls_to_download["dev"].append(f"{folder}/dev/aofrench_dev.txt")
urls_to_download["test"].append(f"{folder}/test/aofrench_test.txt")
elif 'de_lang_strict_small' in self.config.name:
urls_to_download["train"].append(f"{folder}/{train_data_dir}/aogerman.txt")
urls_to_download["dev"].append(f"{folder}/dev/aogerman_dev.txt")
urls_to_download["test"].append(f"{folder}/test/aogerman_test.txt")
elif 'zh_lang_strict_small' in self.config.name:
urls_to_download["train"].append(f"{folder}/{train_data_dir}/aochinese.txt")
urls_to_download["dev"].append(f"{folder}/dev/aochinese_dev.txt")
urls_to_download["test"].append(f"{folder}/test/aochinese_test.txt")
elif 'ja_lang_strict_small' in self.config.name:
urls_to_download["train"].append(f"{folder}/{train_data_dir}/aojapanese.txt")
urls_to_download["dev"].append(f"{folder}/dev/aojapanese_dev.txt")
urls_to_download["test"].append(f"{folder}/test/aojapanese_test.txt")
else:
urls_to_download["train"] = [f"{folder}/{train_data_dir}/{fn}" for fn in filenames]
urls_to_download["dev"] = [f"{folder}/dev/{fn}" for fn in filenames]
urls_to_download["test"] = [f"{folder}/test/{fn}" for fn in filenames]
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
"filepaths": downloaded_files["train"]}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "dev",
"filepaths": downloaded_files["dev"]}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
"filepaths": downloaded_files["test"]
}
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split, filepaths):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# the filepaths should be a list of filepaths
if isinstance(filepaths, str):
filepaths = [filepaths]
global_idx = 0
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
is_tags = False
text = ""
filename = ""
# Every other row contains POS tags. First row is the filename (we can't use filepath since the file path changes upon caching)
for row in f:
if filename == "":
filename = row.strip()
continue
if is_tags:
yield global_idx, {"text": text.strip(), "tagged_text": row.strip(), "filename": filename}
global_idx += 1
is_tags = False
else:
text = row
is_tags = True
|