File size: 8,713 Bytes
bb22054 8b90f3b bb22054 8b90f3b bb22054 8b90f3b bb22054 8b90f3b bb22054 8b90f3b eb0c0b7 8b90f3b bb22054 8b90f3b bb22054 8b90f3b bb22054 8b90f3b bb22054 8b90f3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Children's Book Test Dataset."""
import datasets
_CITATION = """\
@misc{hill2016goldilocks,
title={The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations},
author={Felix Hill and Antoine Bordes and Sumit Chopra and Jason Weston},
year={2016},
eprint={1511.02301},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
The Children’s Book Test (CBT) is designed to measure directly
how well language models can exploit wider linguistic context.
The CBT is built from books that are freely available.
"""
_HOMEPAGE = "https://research.fb.com/downloads/babi/"
_LICENSE = """GNU Free Documentation License v1.3"""
ZIP_URL = "http://www.thespermwhale.com/jaseweston/babi/CBTest.tgz"
dir = "CBTest/data/"
paths = {
"raw": {"train": dir + "cbt_train.txt", "valid": dir + "cbt_valid.txt", "test": dir + "cbt_test.txt"},
"V": {
"train": dir + "cbtest_V_train.txt",
"valid": dir + "cbtest_V_valid_2000ex.txt",
"test": dir + "cbtest_V_test_2500ex.txt",
},
"P": {
"train": dir + "cbtest_P_train.txt",
"valid": dir + "cbtest_P_valid_2000ex.txt",
"test": dir + "cbtest_P_test_2500ex.txt",
},
"NE": {
"train": dir + "cbtest_NE_train.txt",
"valid": dir + "cbtest_NE_valid_2000ex.txt",
"test": dir + "cbtest_NE_test_2500ex.txt",
},
"CN": {
"train": dir + "cbtest_CN_train.txt",
"valid": dir + "cbtest_CN_valid_2000ex.txt",
"test": dir + "cbtest_CN_test_2500ex.txt",
},
}
class Cbt(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="raw", version=VERSION, description="This part of my dataset covers the raw CBT books"
),
datasets.BuilderConfig(
name="V", version=VERSION, description="This part of my dataset covers the verb answer CBT dataset"
),
datasets.BuilderConfig(
name="P", version=VERSION, description="This part of my dataset covers the preposition answer CBT dataset"
),
datasets.BuilderConfig(
name="NE",
version=VERSION,
description="This part of my dataset covers the named entity answer CBT dataset",
),
datasets.BuilderConfig(
name="CN", version=VERSION, description="This part of my dataset covers the common noun answer CBT dataset"
),
]
def _info(self):
if self.config.name in ["V", "P", "NE", "CN"]:
features = datasets.Features(
{
"sentences": datasets.Sequence(datasets.Value("string")), # There are 20 sentences
"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"options": datasets.Sequence(datasets.Value("string")),
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features({"title": datasets.Value("string"), "content": datasets.Value("string")})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = ZIP_URL # Cannot download just one single type as it is a compressed file.
archive = dl_manager.download(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["train"], "files": dl_manager.iter_archive(archive)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["test"], "files": dl_manager.iter_archive(archive)},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": paths[self.config.name]["valid"], "files": dl_manager.iter_archive(archive)},
),
]
def _generate_examples(self, filepath, files):
"""Yields examples as (key, example) tuples."""
for path, f in files:
if path == filepath:
if self.config.name != "raw":
sentences = []
example_idx = 0
for idx, line in enumerate(f):
line = line.decode("utf-8")
if line.strip() == "":
continue
elif line.split()[0] == "21":
splitline = line.split("\t") # question, answer options are tab separated
question = splitline[0]
answer = splitline[1]
options = splitline[-1]
question = question[2:].strip() # The first two indices contain `21`.
answer = answer.strip()
options = options.strip().split("|")
yield example_idx, {
"sentences": sentences,
"question": question,
"options": options,
"answer": answer,
}
sentences = []
example_idx += 1
else:
if len(line.split()[0]) == 1:
sentences.append(line[1:].strip())
else:
sentences.append(line[2:].strip())
# Text might contain double spaces.
else:
book_idx = 0
book_sentences = []
for idx, line in enumerate(f):
line = line.decode("utf-8")
if line[:12] == "_BOOK_TITLE_":
if idx == 0: # First line:
title = line.split(":")[1].strip()
else:
yield book_idx, {
"title": title,
"content": "".join(book_sentences),
}
title = line.split(":")[1].strip()
book_sentences = []
book_idx += 1
else:
book_sentences.append(line)
else:
yield book_idx, {
"title": title,
"content": "".join(book_sentences),
}
book_sentences = []
book_idx += 1
break
|