Datasets:
File size: 11,925 Bytes
230a13a cd30a7d 230a13a d64e6c1 230a13a 139df9d d64e6c1 230a13a cd30a7d 230a13a d64e6c1 230a13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# coding=utf-8
# Copyright 2022 The Google and HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import OrderedDict
# from text_processor.text_processor import TextProcessor
import datasets
logger = datasets.logging.get_logger(__name__)
""" FLEURS Dataset"""
_FLEURS_LANG_TO_ID = OrderedDict([("Afrikaans", "af"), ("Amharic", "am"), ("Arabic", "ar"), ("Armenian", "hy"), ("Assamese", "as"), ("Asturian", "ast"), ("Azerbaijani", "az"), ("Belarusian", "be"), ("Bengali", "bn"), ("Bosnian", "bs"), ("Bulgarian", "bg"), ("Burmese", "my"), ("Catalan", "ca"), ("Cebuano", "ceb"), ("Mandarin Chinese", "cmn_hans"), ("Cantonese Chinese", "yue_hant"), ("Croatian", "hr"), ("Czech", "cs"), ("Danish", "da"), ("Dutch", "nl"), ("English", "en"), ("Estonian", "et"), ("Filipino", "fil"), ("Finnish", "fi"), ("French", "fr"), ("Fula", "ff"), ("Galician", "gl"), ("Ganda", "lg"), ("Georgian", "ka"), ("German", "de"), ("Greek", "el"), ("Gujarati", "gu"), ("Hausa", "ha"), ("Hebrew", "he"), ("Hindi", "hi"), ("Hungarian", "hu"), ("Icelandic", "is"), ("Igbo", "ig"), ("Indonesian", "id"), ("Irish", "ga"), ("Italian", "it"), ("Japanese", "ja"), ("Javanese", "jv"), ("Kabuverdianu", "kea"), ("Kamba", "kam"), ("Kannada", "kn"), ("Kazakh", "kk"), ("Khmer", "km"), ("Korean", "ko"), ("Kyrgyz", "ky"), ("Lao", "lo"), ("Latvian", "lv"), ("Lingala", "ln"), ("Lithuanian", "lt"), ("Luo", "luo"), ("Luxembourgish", "lb"), ("Macedonian", "mk"), ("Malay", "ms"), ("Malayalam", "ml"), ("Maltese", "mt"), ("Maori", "mi"), ("Marathi", "mr"), ("Mongolian", "mn"), ("Nepali", "ne"), ("Northern-Sotho", "nso"), ("Norwegian", "nb"), ("Nyanja", "ny"), ("Occitan", "oc"), ("Oriya", "or"), ("Oromo", "om"), ("Pashto", "ps"), ("Persian", "fa"), ("Polish", "pl"), ("Portuguese", "pt"), ("Punjabi", "pa"), ("Romanian", "ro"), ("Russian", "ru"), ("Serbian", "sr"), ("Shona", "sn"), ("Sindhi", "sd"), ("Slovak", "sk"), ("Slovenian", "sl"), ("Somali", "so"), ("Sorani-Kurdish", "ckb"), ("Spanish", "es"), ("Swahili", "sw"), ("Swedish", "sv"), ("Tajik", "tg"), ("Tamil", "ta"), ("Telugu", "te"), ("Thai", "th"), ("Turkish", "tr"), ("Ukrainian", "uk"), ("Umbundu", "umb"), ("Urdu", "ur"), ("Uzbek", "uz"), ("Vietnamese", "vi"), ("Welsh", "cy"), ("Wolof", "wo"), ("Xhosa", "xh"), ("Yoruba", "yo"), ("Zulu", "zu")])
_FLEURS_LANG_SHORT_TO_LONG = {v: k for k, v in _FLEURS_LANG_TO_ID.items()}
_FLEURS_LANG = sorted(["af_za", "am_et", "ar_eg", "as_in", "ast_es", "az_az", "be_by", "bn_in", "bs_ba", "ca_es", "ceb_ph", "cmn_hans_cn", "yue_hant_hk", "cs_cz", "cy_gb", "da_dk", "de_de", "el_gr", "en_us", "es_419", "et_ee", "fa_ir", "ff_sn", "fi_fi", "fil_ph", "fr_fr", "ga_ie", "gl_es", "gu_in", "ha_ng", "he_il", "hi_in", "hr_hr", "hu_hu", "hy_am", "id_id", "ig_ng", "is_is", "it_it", "ja_jp", "jv_id", "ka_ge", "kam_ke", "kea_cv", "kk_kz", "km_kh", "kn_in", "ko_kr", "ckb_iq", "ky_kg", "lb_lu", "lg_ug", "ln_cd", "lo_la", "lt_lt", "luo_ke", "lv_lv", "mi_nz", "mk_mk", "ml_in", "mn_mn", "mr_in", "ms_my", "mt_mt", "my_mm", "nb_no", "ne_np", "nl_nl", "nso_za", "ny_mw", "oc_fr", "om_et", "or_in", "pa_in", "pl_pl", "ps_af", "pt_br", "ro_ro", "ru_ru", "bg_bg", "sd_in", "sk_sk", "sl_si", "sn_zw", "so_so", "sr_rs", "sv_se", "sw_ke", "ta_in", "te_in", "tg_tj", "th_th", "tr_tr", "uk_ua", "umb_ao", "ur_pk", "uz_uz", "vi_vn", "wo_sn", "xh_za", "yo_ng", "zu_za"])
_FLEURS_LONG_TO_LANG = {_FLEURS_LANG_SHORT_TO_LONG["_".join(k.split("_")[:-1]) or k]: k for k in _FLEURS_LANG}
_FLEURS_LANG_TO_LONG = {v: k for k, v in _FLEURS_LONG_TO_LANG.items()}
_FLEURS_GROUP_TO_LONG = OrderedDict({
"western_european_we": ["Asturian", "Bosnian", "Catalan", "Croatian", "Danish", "Dutch", "English", "Finnish", "French", "Galician", "German", "Greek", "Hungarian", "Icelandic", "Irish", "Italian", "Kabuverdianu", "Luxembourgish", "Maltese", "Norwegian", "Occitan", "Portuguese", "Spanish", "Swedish", "Welsh"],
"eastern_european_ee": ["Armenian", "Belarusian", "Bulgarian", "Czech", "Estonian", "Georgian", "Latvian", "Lithuanian", "Macedonian", "Polish", "Romanian", "Russian", "Serbian", "Slovak", "Slovenian", "Ukrainian"],
"central_asia_middle_north_african_cmn": ["Arabic", "Azerbaijani", "Hebrew", "Kazakh", "Kyrgyz", "Mongolian", "Pashto", "Persian", "Sorani-Kurdish", "Tajik", "Turkish", "Uzbek"],
"sub_saharan_african_ssa": ["Afrikaans", "Amharic", "Fula", "Ganda", "Hausa", "Igbo", "Kamba", "Lingala", "Luo", "Northern-Sotho", "Nyanja", "Oromo", "Shona", "Somali", "Swahili", "Umbundu", "Wolof", "Xhosa", "Yoruba", "Zulu"],
"south_asian_sa": ["Assamese", "Bengali", "Gujarati", "Hindi", "Kannada", "Malayalam", "Marathi", "Nepali", "Oriya", "Punjabi", "Sindhi", "Tamil", "Telugu", "Urdu"],
"south_east_asian_sea": ["Burmese", "Cebuano", "Filipino", "Indonesian", "Javanese", "Khmer", "Lao", "Malay", "Maori", "Thai", "Vietnamese"],
"chinese_japanase_korean_cjk": ["Mandarin Chinese", "Cantonese Chinese", "Japanese", "Korean"],
})
_FLEURS_LONG_TO_GROUP = {a: k for k, v in _FLEURS_GROUP_TO_LONG.items() for a in v}
_FLEURS_LANG_TO_GROUP = {_FLEURS_LONG_TO_LANG[k]: v for k, v in _FLEURS_LONG_TO_GROUP.items()}
_ALL_LANG = _FLEURS_LANG
_ALL_CONFIGS = []
for langs in _FLEURS_LANG:
_ALL_CONFIGS.append(langs)
_ALL_CONFIGS.append("all")
# TODO(FLEURS)
_DESCRIPTION = "4.FLEURS is the speech version of the FLORES machine translation benchmark, covering 2000 n-way parallel sentences in n=102 languages."
_CITATION = ""
_HOMEPAGE_URL = ""
_DATA_URL = "https://storage.googleapis.com/xtreme_translations/FLEURS102/{}.tar.gz"
_METADATA_URL = "data/metadata.zip"
class FleursConfig(datasets.BuilderConfig):
"""BuilderConfig for xtreme-s"""
def __init__(
self, name, description, citation, homepage, data_url
):
super(FleursConfig, self).__init__(
name=self.name,
version=datasets.Version("2.0.0", ""),
description=self.description,
)
self.name = name
self.description = description
self.citation = citation
self.homepage = homepage
self.data_url = data_url
def _build_config(name):
return FleursConfig(
name=name,
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE_URL,
data_url=_DATA_URL,
)
class Fleurs(datasets.GeneratorBasedBuilder):
DEFAULT_WRITER_BATCH_SIZE = 1000
BUILDER_CONFIGS = [_build_config(name) for name in _ALL_CONFIGS]
def _info(self):
task_templates = None
langs = _ALL_CONFIGS
features = datasets.Features(
{
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=self.config.description + "\n" + _DESCRIPTION,
features=features,
supervised_keys=("audio", "transcription"),
homepage=self.config.homepage,
citation=self.config.citation + "\n" + _CITATION,
task_templates=task_templates,
)
# Fleurs
def _split_generators(self, dl_manager):
data_url_format = self.config.data_url
metadata_path = dl_manager.download_and_extract(_METADATA_URL)
if self.config.name == "all":
data_urls = {l: data_url_format.format(l) for l in _FLEURS_LANG}
else:
data_urls = {
self.config.name: data_url_format.format(self.config.name)
}
archive_path = dl_manager.download(data_urls)
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else None
archive_iters = {l: dl_manager.iter_archive(v) for l,v in archive_path.items()}
audio_path = {l: os.path.join(l, "audio") for l in archive_path.keys()}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iters": archive_iters,
"audio_path": {
l: os.path.join(v, "train") for l, v in audio_path.items()
},
"text_path": {
l: os.path.join(metadata_path, "metadata", l, "train.tsv") for l in archive_path.keys()
},
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iters": archive_iters,
"audio_path": {
l: os.path.join(v, "dev") for l, v in audio_path.items()
},
"text_path": {
l: os.path.join(metadata_path, "metadata", l, "dev.tsv") for l in archive_path.keys()
},
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive": local_extracted_archive,
"archive_iters": archive_iters,
"audio_path": {
l: os.path.join(v, "test") for l, v in audio_path.items()
},
"text_path": {
l: os.path.join(metadata_path, "metadata", l, "test.tsv") for l in archive_path.keys()
},
},
),
]
def _get_data(self, lines, lang_id):
# tp = TextProcessor()
data = {}
for line in lines:
if isinstance(line, bytes):
line = line.decode("utf-8")
(
_id,
file_name,
raw_transcription,
transcription,
_,
num_samples,
gender,
) = line.strip().split("\t")
lang_group = _FLEURS_LANG_TO_GROUP[lang_id]
data[file_name] = {
"sentence": raw_transcription,
}
return data
def _generate_examples(self, local_extracted_archive, archive_iters, audio_path, text_path):
key = 0
for lang_id, archive_iter in archive_iters.items():
with open(text_path[lang_id], encoding="utf-8") as f:
lines = f.readlines()
data = self._get_data(lines, lang_id)
for path, f in archive_iter:
path = path.split("/")[-1]
if path not in data.keys():
continue
result = data[path]
extracted_audio_path = (
os.path.join(local_extracted_archive[lang_id], audio_path[lang_id])
if local_extracted_archive is not None
else None
)
extracted_audio_path = os.path.join(extracted_audio_path, path) if extracted_audio_path else path
result["path"] = extracted_audio_path if extracted_audio_path is not None else None
result["audio"] = {"path": path, "bytes": f.read()}
yield key, result
key += 1
|