Dataset Viewer
Auto-converted to Parquet
text
stringlengths
0
243
docker network create --subnet=172.20.0.0/16 datamakingnet # create custom network
1. Create ZooKeeper Container
docker pull zookeeper:3.4
docker run -d --hostname zookeepernode --net datamakingnet --ip 172.20.1.3 --name datamaking_zookeeper --publish 2181:2181 zookeeper:3.4
2. Create Kafka Container
docker pull ches/kafka
docker run -d --hostname kafkanode --net datamakingnet --ip 172.20.1.4 --name datamaking_kafka --publish 9092:9092 --publish 7203:7203 --env KAFKA_ADVERTISED_HOST_NAME=192.168.99.100 --env ZOOKEEPER_IP=192.168.99.100 ches/kafka
docker images
docker ps
docker ps -a
sudo -i
ssh-keygen
clear
sudo apt update
sudo apt install awscli -y
clea
clear
aws configure
curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl
curl -Lo kops https://github.com/kubernetes/kops/releases/download/$(curl -s https://api.github.com/repos/kubernetes/kops/releases/latest | grep tag_name | cut -d '"' -f 4)/kops-linux-amd64
chmod +x kops
sudo mv kops /usr/local/bin/kops
kops
kubectl
clear
kops create cluster --name=kubevpro.groophy.in --state=s3://vproile-kops-state --zones=us-west-2a,us-west-2b --node-count=2 --node-size=t3.small \
clear
kops create cluster --name=kubevpro.groophy.in --state=s3://vproile-kops-state --zones=us-west-2a,us-west-2b --node-count=2 --node-size=t3.small --master-size=t3.medium --dns-zone=kubevpro.groophy.in --node-volume-size=8 --master-volume-size=8
kops update cluster --name kubevpro.groophy.in --state=s3://vproile-kops-state --yes --admin
clear
kubectl get nodes
clear
kubectl get nodes
kubectl get nodes -o wide
kubectl describe node ip-172-20-86-99.us-west-2.compute.internal
clear
kubectl get nodes
kubectl get nodes ip-172-20-41-44.us-west-2.compute.internal -o yaml
clear
kubectl get nodes ip-172-20-41-44.us-west-2.compute.internal -o json
clear
history
clear
vim pod1.yaml
kubectl apply -f pod1.yaml
kubectl get pod
kubectl get pod -o wide
kubectl get pod nginx -o yaml
clear
kubectl get pod nginx -o json
clear
kubectl describe pod nginx
clear
kubectl delete pod nginx
ls
kubectl run nginx1 --image=nginx
kubectl get pod
kubectl edit pod nginx
kubectl edit pod nginx1
kubectl get pod
#
# This constraints file was automatically generated on 2024-09-16T16:29:09.578311
# via "eager-upgrade" mechanism of PIP. For the "v2-10-test" branch of Airflow.
# This variant of constraints install uses the HEAD of the branch version for 'apache-airflow' but installs
# the providers from PIP-released packages at the moment of the constraint generation.
#
# Those constraints are actually those that regular users use to install released version of Airflow.
# We also use those constraints after "apache-airflow" is released and the constraints are tagged with
# "constraints-X.Y.Z" tag to build the production image for that version.
#
# This constraints file is meant to be used only in the "apache-airflow" installation command and not
# in all subsequent pip commands. By using a constraints.txt file, we ensure that solely the Airflow
# installation step is reproducible. Subsequent pip commands may install packages that would have
# been incompatible with the constraints used in Airflow reproducible installation step. Finally, pip
# commands that might change the installed version of apache-airflow should include "apache-airflow==X.Y.Z"
# in the list of install targets to prevent Airflow accidental upgrade or downgrade.
#
# Typical installation process of airflow for Python 3.8 is (with random selection of extras and custom
# dependencies added), usually consists of two steps:
#
# 1. Reproducible installation of airflow with selected providers (note constraints are used):
#
# pip install "apache-airflow[celery,cncf.kubernetes,google,amazon,snowflake]==X.Y.Z" \
# --constraint \
# "https://raw.githubusercontent.com/apache/airflow/constraints-X.Y.Z/constraints-3.8.txt"
#
# 2. Installing own dependencies that are potentially not matching the constraints (note constraints are not
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
9